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Abstract: We present the exact boundary integral formulae for calculation of the geother-
mal anomaly due to a two dimensional body whose thermal conductivity is λT and its
cross-section is bounded by the closed general polygonal contour. This body is buried in
the superficial layer of conductivity λ1. The half-space z > h with the thermal conducti-
vity λ2 is considered as a substratum of models. The boundary integral technique for
the solution of this problem requires the application of logarithmic potential terms in
infinite series. Numerical calculations based on derived formulae revealed that the sur-
face anomaly heat flow reflects the “topography” mainly of the upper boundary of the
perturbing body. The derived algorithm and the developed numerical program enable
calculations for a number of interesting models: intrusions, protrusions of the substratum
etc.
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1. Formulation and the B.I.E. solution

The solution of the forward geothermal refraction problems for two or three
dimensional isolated bodies belongs to the “classical geophysics”, e.g. (Lebe-
dev et al., 1955; Ljubimova et al., 1983). The exact analytical solutions
by means of separation of variables in Laplace’s or Poisson’s equations was
performed for “smooth bodies” such as sphere, cylinder, ellipsoid, using sep-
arability of these partial differential equations (Moon and Spencer, 1971).
The exact solution for polyhedral bodies can be performed using methods
of finite differences, finite elements or boundary equations method. The last
method mentioned seems to be more effective in comparison to the previous
two, since numerical calculations are concentrated mainly to the boundary
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surface of disturbing body, see e.g. (Chen and Beck, 1991).
The theory of the boundary integral calculations of geothermal anoma-

lies due to 3D bodies bounded by a piecewise smooth (Lyapunov’s) sur-
face S and situated in two-layered earth was presented in the earlier paper
(Hvoždara and Valkovič, 1999). We generalize the presented 3D analysis to
more complicated polygonal 2D body of thermal conductivity λT , bounded
by the polygon L and buried in the superficial layer “1” 0 ≤ z ≤ h with
the thermal conductivity λ1. In this paper we suppose that the 2D body is
bounded by the closed polygon with N + 1 vertices in the plane (x, z), see
Fig. 1. The vertices are denoted as Ak, k = 1, 2, . . . ,N + 1, where N ≥ 3,
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Fig. 1. Scheme for the two-dimensional perturbing body embedded in the first layer with
uniform ambient geothermal heat-flow field density q0.

and the first vertex A1 is identical with the last one AN+1 ≡ A1. These
vertices are connected by the line segments Tk, their number is N and the
lengths are Tk:

Tk =
[
(xk+1 − xk)

2 + (zk+1 − zk)
2
]1/2

. (1)

The theory of steady thermal field (Carslaw and Jaeger, 1959) enables us
to calculate the temperature field U(x, z) which obeys the Laplace equation

302



Contributions to Geophysics and Geodesy Vol. 39/4, 2009 (301–323)

∇2U(x, z) = 0.

The density of the heat flow is

q = −λ gradU.

The unperturbed temperature field V1 in the upper layer is given as a linear
function of z:

V1(x, z) = z(q0/λ1), (2)

where q0 is the unperturbed vertical heat flow density at the surface z = 0.
Its analytical continuation into region “2” is

V2(x, z) = z(q0/λ2) + (q0h/λ1)(1− λ1/λ2). (3)

Since the physical properties of our model as well as the exciting thermal
field are independent of y, we can use the well-known 2D boundary element
apparatus for the solution. The transition from 3D problem to 2D one was
discussed in detail in e.g. (Hvoždara, 1983; Hvoždara and Schlosser, 1985).
In our 2D model we consider the y-axis as a strike line of the perturbing
body, so we can use the 2D analogs of the 3D Green’s functions. It results
in the following changes:

• the principal term [
(x− x′)2 + (y − y′)2 + (z − z′)2

]−1/2 must be re-
placed by ln

[
(x− x′)2 + (z − z′)2

]−1/2,
• similar changes must be done also in all terms of the infinite series
obtained in the 3D Green’s function used in the papers (Hvoždara and
Valkovič, 1999; Hvoždara, 2008),

• integration over the boundary surface S using the elements dSQ of
perturbing body must be replaced by the integration along the contour
line L using the elements d �′,

• the factor 1/(4π) should be replaced by 1/(2π).
Then the transformation of our 3D treatment given in Hvoždara and Valko-
vič (1999) for the case of polygonal 2D perturbing body now leads to the
following formulae for temperatures in three media:
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U1(r) = V1(r) +
1
2π

∫
L

f(r′)
∂

∂n′
g1(r, r′) d �′, (4a)

for P (r) ∈ Ext(L) and z ∈ 〈0, h〉. In the interior of 2D body the temperature
is given by

UT (r) =
λ1
λT

⎧⎨
⎩V1(r)− v0 +

1
2π

∫
L

f(r′)
∂

∂n′
g1(r, r′) d �′

⎫⎬
⎭+

+ (1− λ1/λT )v0, P (r) ∈ Int(L), (4b)

U2(r) = V2(r) +
1
2π

∫
L

f(r′)
∂

∂n′
g2(r, r′) d �′, z ≥ h, (4c)

where v0 is the mean value of exciting potential V1(r) on the boundary
contour L:

v0 =
1
|L|

∫
L

V1(r) d �. (5)

In the formulae (4a–c) the calculation point P (r) ≡ (x, z) lies outside L.
The point Q(r′) ≡ (x′, z′) lies on the contour L; it is the running integration
point. The function f(r) occurring in (4a–c) is a modified double layer
density distributed along curve L which is simply related to the potential
UT (r) on L:

f(r) = (1− λT /λ1)[UT (r)− v0], P (r) ∈ L. (6)

This density must be calculated by means of the boundary integral equation
(B.I.E.):

f(r) = 2β [V1(r)− v0] +
β

π

∫
L

\ f(r′)
∂

∂n′
g1(r, r′) d �′,

β = (1− λT /λ1)/(1 + λT /λ1), P (r) ∈ L. (7)

The back slash in the integral sign in (7) denotes integration in the principal
value sense.
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2. Greens functions of our geothermal problem

The formulae given above, involve the normal derivatives of Green’s func-
tions g1(r, r′), g2(r, r′). In what follows, the basic singular part in these
functions is logarithm of expression |r− r′|−1 = [(x− x′)2 + (z − z′)2]−1/2.
Its normal derivative is calculated by means of formula:

∂

∂n′
ln |r− r′|−1 = n′ · (r− r′)

|r− r′|2 =
n′x(x− x′) + n′z(z − z′)

|r− r′|2 , (8)

where n′ ≡ (n′x, n′z) is the outer normal vector to the contour line L, which is
in our case composed of N segments Tk. These functions obey the following
two-dimensional equations:

∇2g1(r, r′) = −2πδ(x− x′)δ(z − z′), (9)

∇2g2(r, r′) = 0, (10)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂z2 is 2D Laplace operator. The boundary con-
ditions on planes z = 0 and z = h are:

g1|z=0 = 0, (11)

g1|z=h = g2|z=h , (12)

[∂g1/∂z]z=h = (λ2/λ1) [∂g2/∂z]z=h . (13)

On the right side of the Poisson equation (9) we have the two-dimensional
Dirac’s function δ(r−r′) = δ(x−x′)δ(z− z′), with the singularity in points
(x′, z′) lying on the boundary line L of the perturbing body. The theory of
the classical potential shows that this singularity holds true for potential of
y-directed line source:

ln |r− r′|−1 = ln
[
(x− x′)2 + (z − z′)2

]−1/2
, (14)

as a fundamental solution of 2D Poisson equation

∇2 ln |r− r′|−1 = −2πδ(r − r′). (15)
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This logarithmic potential represents the basic part of g1(r, r′). Moreover it
must contain some harmonic part in order to satisfy the boundary conditions
(12), (13). Using the knowledge from 3D geothermal problem (Hvoždara and
Valkovič, 1999) we have 2D analogs of Green’s function of the form:

g1(r, r′) = ln
[
η2 + (z − z′)2

]−1/2 − ln [
η2 + (z + z′)2

]−1/2 −
−

∞∑
n=1

κn
{
ln

[
η2 + (2nh− z − z′)2

]−1/2 −
− ln

[
η2 + (2nh− z + z′)2

]−1/2}−
− κn

{
ln

[
η2 + (2nh+ z − z′)2

]−1/2 −
− ln

[
η2 + (2nh+ z + z′)2

]−1/2}
, (16)

g2(r, r′) = (1− κ)

{
ln

[
η2 + (z − z′)2

]−1/2 − ln [
η2 + (z + z′)2

]−1/2 −
−

∞∑
n=1

κn
{
ln

[
η2 + (2nh+ z − z′)2

]−1/2−
− ln

[
η2 + (2nh+ z + z′)2

]−1/2} }
, (17)

where η2 = (x−x′)2 and κ = (1−λ1/λ2)/(1+λ1/λ2). Now we have prepa-
red the Green’s functions as kernels of integral solution expressed by (4a–c).
These Green’s functions contain harmonic parts as well, they take the form
of infinite series. We note that g1(r, r′) can contain another singularity
caused by the term −κ ln

[
η2 + (2nh− z − z′)2

]−1/2 if n = 1 and both z →
h, z′ → h, i.e. the body touches the bottom planar boundary z = h.
Let us denote by Lh the part of L which touches the bottom boundary
z = h. Then this singularity can be treated similarly as ln |r − r′|−1 with
some modifications to −κ ln

[
η2 + (ζ − z′)2

]−1/2, where ζ = 2h− z. Similar
situation occurs if the body touches the boundary z = 0 by some segment L0.
Then for this segment we must treat as singular not only the term ln |r −
r′|−1, but also the term ln [

η2 + (z + z′)2
]−1/2. The careful treatment of

306



Contributions to Geophysics and Geodesy Vol. 39/4, 2009 (301–323)

these “contact cases”, similarly as was performed in Hvoždara and Valkovič
(1999) for the 3D body, gives the modified boundary integral equation in
place of (7):

f(r) = 2γ(P ) [V1(r)− v0] +
γ(P )

π

∫
L

\ f(r′)
∂

∂n′
g1(r, r′) d �′, (18)

where γ(P ) is the discontinuous coefficient of the integral equation

γ(P ) =

∣∣∣∣∣∣∣
β = (1− λT /λ1)/(1 + λT /λ1), for P 
∈ Lh, P 
∈ L0,
βh = β/(1 + κβ), for P ∈ Lh,
β0 = (1− λT /λ1)/2, for P ∈ L0.

(19)

This enhancement for contact cases enables us to calculate more interesting
model bodies useful for practice.

3. Algorithm for numerical calculations

In the numerical calculations we can use most of the experience from solu-
tions of the B.I.E. in the simpler case (Hvoždara, 1983, 1986), where the
Green’s function is only of the form ln |r−r′|−1 as well as in the mathemati-
cally similar magnetometric problem considered in Hvoždara and Kaplíková
(2005). The key for numerical solution of the B.I.E. is necessity to have
formulae for the normal derivatives of both terms in g1(r, r′) given by (16).
For the first part we have the expression given by (9) and we need to inte-
grate it along elementary segments Δs�, which in the collocation method of
solution of B.I.E. compose the whole contour L. According to explanation
given in Hvoždara (1983), for the integral of the principal logarithmic term
in both g1(r, r′) and g2(r, r′) we have∫
Δs�

∂

∂n′
ln

[
(x− x′)2 + (z − z′)2

]−1/2
d �′ =

∫
Δs�

n′ · (r− r′)
|r− r′|2 d �′ =

= ω(Pj , Q�), (20)

where ω(Pj , Q�) is the plane angle of the view subtended from the point Pj

onto segment Δs� with the central point Q� and outer normal n′, while this
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angle must be multiplied by the signum of the scalar product of vectors n′

and (r−r′). By means of the cosine theorem applied to the triangle scheme
in Fig. 2 we obtain

Pj(x, z)

γj�

r2�

r1�

n′

Q� ≡ (x′, z′)Δs
�

Fig. 2. Explanation sketch to the calculation of the plane angle of view onto a linear
segment.

Δs� =
[
r21� + r22� − 2 r1� r2� cos γj�

]1/2
,

so the value of cosine for γj� is

cos γj� =
[
r21� + r22� − (Δs�)

2
]
/2r1�r2�, (21)

and for ω(Pj , Q�) we have:

ω(Pj , Q�) = γj� sign
[
n′ · (r− r′)

]
. (22)

For the normal derivative of the second logarithmic part in g1(r, r′) we use
similar reasoning, so we can write

ω∗(P ∗j , Q�) =
∫
Δs�

n′ · (r∗j − r′)
|r∗j − r′|2 d �′ =

∫
Δs�

n′x(xj − x′) + n′z(−zj − z′)
(xj − x′)2 + (zj + z′)2

d �′ =

= γ∗j� · sign
[
n′(r∗ − r′)

]
. (23)

The geometrical sense of the angle γ∗j� is identical with the plane angle
of view from the point P ∗ ≡ (x,−z) onto segment Δs� around the point
Q� ∈ L. As mentioned above, for the collocation solution of the B.I.E.
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we divide each segment Tk into smaller pieces of equal length Δs�, their
number being mk and the sum of mk equal to M . For practical use we
suggest 5 ≤ mk ≤ 20, according to the length Tk. So we must keep

N∑
k=1

mk =M, (24)

where the total number M of segments Δs� should be 50–100 according
to the total length L. The numbers mk must be optional for purposes of
the accuracy tests of solution of the B.I.E. (7). As we already mentioned,
this method assumes the piecewise constant approximation of the unknown
function f(P ) - its value is equal to the centred one f(Q�) in the whole
segment Δ�j. Then we can write the B.I.E. (7) in the form

f(Pj) = 2β [V1(Pj)− v0] +
β

π

M∑
�=1

∗
f(Q�)u(Pj , Q�), (25)

where asterisk over the summation sign denotes omission of the contribution
from ln |r−r′|−1 on the segment Δs�, where Pj ≡ Q�, in accordance with the
rules of principal value integration. From the explanation by the formula
(20) follows that in this situation the normal vector n′ is perpendicular to
the vector (rj − r′) for the points Q(r′) ∈ Tk, P (r) ∈ Tk, which simplifies
numerical calculations since the singular terms do not arise.
The weighting factors u(Pj , Q�) in (25) have the integral forms as:

u(Pj , Q�) =
∫
Δs�

∂

∂n′
g1(r, r′) d �′, (26)

which involve both angles of view γj�, γ∗j� onto segment Δs� and also contri-
bution due to all terms of the infinite series in g1(r, r′). The equation (25)
tells us that into value f(Pj) there are incorporated contributions from all
f(Q�) (with some weighting factors) at segments Δs� forming L.
The geometrical relations occurring in numerical calculations are illus-

trated with the example of segment T3 depicted in Fig. 3, similarly as in
Hvoždara and Kaplíková (2005). This segment connects the points A3 and
A4 creating 6 subsegments (pieces) with centres Q3,0 − Q3,5. The normal
vector for the whole segment T3 is n′3 and its Carthesian components calcu-
lated from equations n′3×T3/T3 = 1 and n′3 ·T3 = 0, which reflects mutual
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P ≡ (x, z)
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Fig. 3. Subdivision of the vector T 3 into six subsegments.

orthogonality of vectors T3 and n′3. Then it is clear that n′3 is constant unit
vector for the whole segment T3, its components can be calculated from co-
ordinates of terminal points A3, A4. The length of the vector T3 = A3A4 is
given by the formula (1):

T3 =
[
(x′4 − x′3)

2 + (z′4 − z′3)
2
]1/2

, (27)

because the vector T3 is:

T3 = (x
′
4 − x′3)ex + (z

′
4 − z′3)ez. (28)

As we already noted the relations: n′3×T3/T3 = 1 and n′3 ·T3 = 0, have to
be fulfilled since the angle between n′3 and T3 is π/2. Then we can easily
find the carthesian components of n′3:

n′x = −
z′4 − z′3

T3
, n′z = +

x′4 − x′3
T3

. (29)

We apply similar treatment for all vector segments Tk. We see that as soon
as we have defined contour polygon L of the perturbing body, we can easily
determine normal vectors n′ on all vector segments Tk. These values must
be used for calculations of weighting factors for discretized B.I.E. From
treatment given in Hvoždara (1983) we know that the term ω(Pj , Q�) =
γ�j sign [n′� · (rj − r′�)] is the most important term in the weighting factor
u(Pj , Q�). For the case of convex contour line L as shown in Fig. 1 all these
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values will be negative or zero, because sign[n′� · (r′j − r′�)] < 0, since the
angles between n′� and (r

′
j − r′�) are obtuse. The zero value is obtained for

the case when P (rj) and Q(r�) belong to the same straight line segment.
It is also necessary to note that for the contour integral of the plane angle
of view the very important formula – the Gaussian integral (Tichonov and
Samarskij, 1966) holds true:

∮
L

n′ · (r− r′)
|r− r′|2 d �′ =

��

��

0, for P (r) ∈ Ext(L)
−π, for P (r) ∈ L

−2π, for P (r) ∈ Int(L) .
(30)

The case P (r) ∈ L of this formula provides us with very good check of accu-
racy of calculation of ω(Pj , Q�), because at the calculation of the weighting
factors of the B.I.E. (7) we have to fulfill the control value:

M∑
�=1

ω(Pj , Q�)
.= −π (31)

with accuracy better than 1%, otherwise we did not introduce fine enough
subdivision of the contour L, or in our program code we have another errors.
The second term in g1(r−r′) is the function ln |r∗−r′|−1 which is harmonic
and from the Gaussian integral (30) its check value follows:

M∑
�=1

ω∗(P ∗j , Q�)
.= 0, (32)

because for ln |r∗ − r′|−1 the point of view P ∗ ≡ (x,−z) lies in Ext(L).
Similar property (zero value) must be obtained also for contributions due
to terms of the infinite series in Green’s function g1(r, r′). The discretized
form of B.I.E. (7) can be written as a classical system ofM linear equations:

M∑
�=1

C�jX� = bj, j = 1, 2, . . . ,M, (33)

where bj = 2β[V1(Pj)− v0], (34)

are elements of the right side vector (they represent values of the exciting
potentials) on elements Δ�j. The elements of the matrix of the system (33)
are
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C�j = δ�j − βπ−1u(Pj , Q�), (35)

where δ�j is the Kronecker’s symbol (δ�j = 1 if � = j and δ�j = 0 for � 
= j).
Values of (as yet) unknown function f(Q) collocated for centres of intervals
Δs� are represented in elements of solution vector X� = f(Q�). The system
of Eq. (33) expresses that contributions from all M elements of the contour
polygon are included in each value f(Qj). It is necessary to stress that the
subdivision to elements Δs� must be dense enough, because the theory of
potential requires continuity of f(Q) along L, which means that the changes
of neighbouring values f(Q�) should not be greater than 5–10%. If this
condition of “quasi continuity” is not satisfied on some segment Tk we must
increase the number of subdivision. Another check of accuracy is based on
comparison of values f(Q�) for gradually increased number of subdivision
(M), e.g. M = 50, 80, 120, 160 which is easily possible to perform on
contemporary PC-computers. As soon as the solution of (33) is performed
with satisfactory accuracy, we can calculate approximations of temperatures
U1 or U2, UT by means of formulae (4a–c). From the practical viewpoint
the values of the heat flow density, especially of its vertical anomalous part
are also of interest.

4. Calculations of the temperature and heat flow anomalies

The unperturbed temperature V1(z) in the upper layer is characterized by
the linear formula (2) and the corresponding normal geothermal heat flow
is uniform inside the layer “1”:

q0 = +λ1∂V1/∂z. (36)

We note that we are using geophysical convention for the z-component for
the heat flow density calculation – i.e. positive derivation with respect to
the z-coordinate pointing vertically downward into the earth (the physically
correct definition q = −λ gradU would cause that the qz values are negative
almost everywhere since the temperature U(x, z) as a rule increases with
depth z). The anomalous vertical heat flow in the layer “1” of our model
is:

Δq = λ1∂(ΔT )/∂z, (37)
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where ΔT is the temperature anomaly in the first layer:

ΔT = U1 − V1.

According to the applied collocation method, we have the approximation:

ΔT (P ) =
1
2π

M∑
�=1

f(Q�)u(P,Q�), P ∈ Ext(L), (38)

where P (x, z) is the point of calculation outside the perturbing body and
u(P,Q�) are weighting factors:

u(P,Q�) =
∫
Δs�

g1(P,Q)
∂n′

d �Q. (39)

Following the important checking properties (30) we must achieve with high
accuracy (about 0.001) the test value:

M∑
�=1

u(P,Q�) = 0, (40)

since the point of view P ∈ Ext(L). The region above the perturbing body
is the most interesting region for numerical calculation, i.e. for z ∈ 〈0, hT 〉
where hT = (zu + zb)/2 is the depth of the central plane of the perturbing
body, while zu, zb are z-coordinates of the upper or bottom boundary of the
body. We choose few levels zk in the interval 〈0, hT 〉 and calculate anoma-
lous temperatures for two shifted levels around zk, i.e. ΔT (x, zk − ε) and
ΔT (x, zk + ε) along x-profile points x ∈ 〈−L,+L〉 well covering the hori-
zontal width of the perturbing body. Then we calculate the approximation
of the vertical heat flow anomaly

Δq(x, zk) = λ1 [ΔT (x, zk + ε)−ΔT (x, zk − ε)] /(2ε), (41)

where ε is small increment of zk, e.g. ε = zu/20.
In Fig. 4a we present the results of numerical calculations for the body

of rectangle cross-section having λT /λ1 = 2 and the top boundary in the
depth zu = 0.5m, while for the Fig. 4b we take zu = 0.2m. In both cases
there is also λ2 = λT and the bottom boundary zb is at the depth zb = 2.5m
(= h ≡ hv), so the prism represents intrusion of the substratum into first
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Fig. 4a. Anomalies of Δq/q0 and temperatures U(x, z) at four levels z/d above the
rectangular 2D prism with λT /λ1 = 2, zu = 0.5m, zb = 2.5m.
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Fig. 4b. The same as in Fig. 4a, but for zu = 0.2m.

315
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Fig. 5a. Anomalies of Δq/q0 and temperature U(x, z) at four levels z/d above the 2D
prism of trapezoidal cross-section with λT /λ1 = 2, zu = 0.5m, zb = 2.5m.
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Fig. 5b. The same as in Fig. 5a but for λT /λ1 = 0.5.
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Fig. 6a. Anomalies of Δq/q0 and temperature U(x, z) at four levels z/d above the 2D
prism of polygonal cross-section with λT /λ1 = 2.
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Fig. 6b. The same as in Fig. 6a but for λT /λ1 = 0.5.
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Fig. 7a. Isolines of Δq/q0 above the 3D prismoid elongated in y-direction and its upper
rectangle shifted in x-direction. The dimensions of rectangular surfaces at z1 (upper) and
bottom at z2 are given in table, λT /λ1 = 2. The profile curve Δq/q0 is plotted for y = 0.
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Fig. 7b. The same as in Fig. 7a but for λT /λ1 = 0.5.
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layer. We can see that for λT /λ1 = 2 we have at the surface (z ≈ 0) about
20–40% increase of the heat flow above the prism, then the values of Δq/q0
increase with depth z. We can see the same increase also for isotherms
U(x, z), plotted in the middle set of graphs. These temperatures calculated
using formula (4a) if the point of calculation is outside the perturbing body
and by formula (4b) for points inside of the body. We can see the steep
growth of the temperature above or inside the prism. The coordinates x, z
are normalized by the value d = (zu+zb)/2. The obtained graphs for Δq/q0
are consistent with those obtained in Hvoždara and Schlosser (1985) where
the ambient medium around rectangular prism was a halfspace.
Another interesting model body is a 2D prism with trapezoidal cross-

section. The top and bottom of the body are in the same depths as for
the rectangle in Fig. 4a, but its width is smaller. The curves of Δq/q0 and
U(x, z) are presented in Figs 5a,b for λT /λ1 = 2 and 0.5, respectively. We
can see a slight horizontal asymmetry of anomaly curves. The anomaly
in Δq/q0 is more conspicuous in comparison to the case with rectangle
cross-section. The results for the body with more complicated polygonal
cross-section are presented in Figs 6a,b. In this case we can see that the
topography of the upper boundary of the body is reflected in the course
of Δq/q0 for the profile at the depth z/d = 0.436 which is closest to the
anomalous body. In all figures we can see that the temperature U(x, z) is
disturbed near and inside the perturbing body and far from the body it
attains the levels given by the unperturbed temperature V1 = zq0/λ1. It is
clear that the temperature anomaly ΔT = U1(x, z) tends to zero far from
the perturbing body.
Finally, we present comparative calculations for the surface heat flow

anomaly for 3D body calculated by the method presented in Hvoždara
(2008). This inclined 3D prism is elongated in y-direction, its upper rectan-
gle boundary is horizontally shifted in x-direction, so its cross-section by the
plane y = 0 is a trapezoid shown in Figs 5a,b. The results of the heat flow
anomaly at the surface z = 0 are presented in Figs 7a,b for λT /λ1 = 2 or
0.5, respectively. In the upper figure the isolines of the anomalous heat flow
above the 3D body are plotted, and on the bottom we can see the profile
curves for y = 0, z = 0. We can see that these profile curves well agree with
those presented in Figs 5a,b for Δq/q0 for the depths z/d close to zero. So
we have confirmed applicability of 2D models for y-elongated bodies.
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