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Abstract: We present a least-squares minimization approach to estimate simultaneously

the depth to and thickness of a buried 2D thick, vertically faulted slab from gravity data

using the sample spacing – curves method or simply s-curves method. The method also

provides an estimate for the horizontal location of the fault and a least-squares estimate

for the density contrast of the slab relative to the host. The method involves using a

2D thick vertical fault model convolved with the same finite difference second horizontal

gradient filter as applied to the gravity data. The synthetic examples (noise-free and

noise affected) are presented to illustrate our method. The test on the real data (Central

Valley of Chile) and the obtained results were consistent with the available independent

observations and the broader geological aspects of this region.

Key words: gravity thick fault, depth and thickness solutions, s-curves method, least-
squares method

1. Introduction

A number of simple model geometries have been used to model the gravita-
tional effect of the vertical fault. Many previous workers have assumed an
infinite vertical step and chosen a geometry where one or more semi-infinite
thin horizontal sheets are terminated by a vertical fault plane (Nettleton,
1942; Grant and West, 1965; Sharma and Vyas, l970; Geldart et al., 1966;
Gupta, 1983; Blakely and Simpson 1986; Klingelé et al., l991; Abdelrahman
et al., 2003; Abdelrahman and Essa, 2015). Gendzwill (1970) examined a
different scenario where the fault was represented by a horizontal slab that
was divided into 3 regions. The fault itself was associated with the central
region, with linear density distribution, limited by constant density of sur-
rounded sectors. In this paper, we examine the use of a truncated thick slab
to represent a vertical fault. We present a methodology for simultaneously
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estimating the depth to and thickness of the slab as well as the density
contrast.

The gravitational effect of some simple bodies (e.g., sphere, horizontal
cylinder, vertical cylinder) is of symmetrical shape (with respect to horizon-
tal coordinates). On the other hand, the effect of vertical fault is asymmet-
rical in the direction of horizontal profile. If geological knowledge suggests
that a horizontally layered sequence is present, and that the vertical throw
of the interpreted fault is large compared to the depth to the layer with a
density contrast relative to the host, it is safe to simplify the model under
consideration to just a truncated horizontal slab on the upthrown side of
the fault. A 2D approximation can be used when the strike length of the
fault is greater than the depth to the top of the faulted slab. Despite very
significant differences in mathematical complexity, the expressions for cal-
culating gravity effects of thin and thick truncated horizontal slabs produce
responses that are difficult to distinguish. We argue that a slab with finite
thickness (i.e., the thick slab model) be used in preference to the thin slab
model. We assume the 2D thick, vertically faulted slab is characterized by:
1) semi infinite thick slab, 2) a density contrast relative to the host density,
3) a thickness that is significant in relation to the depth of burial, 4) a strike
length that is large relative to the depth of burial, 5) a truncated vertical
plane where the plane is perpendicular to a profile of vertical gravity mea-
surements, 6) equi-spaced measurements along the profile and all taken at
the same elevation, and 7) a vertical throw which is large when compared
with the depth of burial.

Several methods have been used to interpret gravity data due to faults.
Geldart et al. (1966) described a method of interpreting 2D gravity data
of a single bed that is cut by a flat fault plane of arbitrary dip angle, tak-
ing into account the bed in both the upthrown and downthrown blocks.
Sharma and Vyas (1970) presented a graphical methodology to interpret
gravity data of a 2D fault cutting a series of beds. Parasnis (1973) showed
the application of a vertical fault model to various geological scenarios, and
how the gravity data of one or more thick truncated 2D slabs can be used to
model these geological situations. Telford et al. (1976) developed the equa-
tion for modeling a thick slab with a dipping truncation plane and describe
the application even if the depth of overburden is less than about twice the
thickness of the slab. However, most of these methods are highly subjec-
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tive in determining the fault parameters and can not be applied directly to
measured gravity data consisting of the combined effect of a local structure
(2D thick, vertically faulted slab) and a regional polynomial of zero or first
order, i.e., some preparatory work is necessary to isolate a residual from the
input data.

On the other hand, numerical methods are widely used to interpret grav-
ity data due to simple structures. Gupta (l983) developed a least-squares
approach to depth determination from gravity data due to sphere, cylinder,
and first horizontal gradient of gravity data due to a thin faulted layer. Ab-
delrahman et al. (1987) showed the effectiveness of the least-squares method
in determining depths to a vertical step (thin plate approximation) and a
horizontal cylinder from second vertical gradient maps by finding a solu-
tion of a non-linear equation in depth. Abdelrahman and El-Araby (1993)
suggested a least-squares approach to depth determination from moving av-
erage residual gravity profiles.

Finally, continuous modeling methods are excellent in determining the
depth and the thickness of a buried faulted structure from gravity data
(Talwani et al., l959; Tanner, 1967; Cordell and Henderson, l968). In these
methods, iterative 2D and 3D solutions of gravity data were suggested.
Given girded gravity values and certain limited restrictions on the mass
distribution, a 2D or 3D structural model can be calculated automatically
from gravity data by successive approximations.

In the present paper, we describe a least-squares minimization approach
to estimate simultaneously the depth to and the thickness of a buried 2D
thick, vertically faulted slab from gravity data using a technique that is
termed the “s-curves method”. Our method involves using a 2D thick verti-
cal fault model convolved with the same finite difference second horizontal
gradient filter as applied to the gravity data. The method also provides an
estimate for the horizontal location of the fault and a least-squares estimate
for the density contrast of the slab relative to the host. The method is sim-
ilar to Euler deconvolution, but it solves not only for depth to the source
but also the thickness independently. A scheme for analysis of gravity data
has been formulated to determine the model parameters of the 2D thick,
vertically faulted slab. We apply the method to synthetic data with and
without random noise, and tested it on a field example from Central Valley
of Chile.
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2. The method

The direct problem for the 2D vertical fault (or semi-infinite Bouguer slab)
can be derived with reference to the solid angle concept and is given by
Telford et al. (1976) as:

g(x, t, d) = 2Gσ

[
x ln

√
x2 + (d+ t)2√
x2 + d2

+ πt/2+

+ (t+ d) atan

(
x

d+ t

)
− d atan

(
x

d

)]
,

(1)

where g(x, t, d) is the gravitational effect of the 2D vertical fault, d is the
depth to the top of the slab, t is the thickness of the slab, x is the horizontal
position coordinate, G is the gravitational constant, and σ is the density
contrast of the slab. The 2D thick, vertically faulted slab model is shown
in Fig. 1.

Fig. 1. Vertical schematic section through a 2D thick, vertically faulted slab. The fault
is located at x = 0 on the horizontal coordinate axis. The slab has a thickness of t and
the top of the slab is buried at a depth d. The slab has a density contrast of σ relative to
the host density.

Consider five observation points xi + 2s, xi + s, xi, xi − s, and xi − 2s
on the gravity profile where s = k s0, k = 1, 2, 3, ...,M spacing units and is
called the graticule spacing and where s0 is the fundamental sample spacing
(Hammer, 1977). The numerical first horizontal gradient computed from
gravity data is defined as:
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gx(xi) =
g(xi + s)− g(xi − s)

2s
, i = 1, 2, 3, . . . ,N. (2)

Using Eq. (2), the numerical second horizontal gradient computed from
gravity data is then defined (Levy, 2010) as:

gxx(xi) =
g(xi + 2s)− g(xi) + g(xi − 2s)

4s2
. (3)

Substituting (1) in (3), we obtain:

gxx(xi, t, d, s) = GσW (xi, t, d, s)/2s
2, (4)

where
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Eq. (4) gives the following value at xi = s:

gxx(s) = GσW (t, d, s)/2s2, (6)

where
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(7)

Using (6), (4) can be written as:
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gxx(xi, t, d, s) = gxx(s)W (xi, t, d, s)/W (t, d, s) . (8)

The unknown depth d in (8) can be obtained by minimizing:

ψ(d) = min ||gxx(xi)− gxx(s)W (xi, t, d, s)/W (t, d, s)||22 , (9)

where gxx(xi) represents the numerical second horizontal gradient computed
from gravity data using Eq. (3) at xi and where gxx(s) is a fixed numerical
value at xi = s computed from the second horizontal gradient profile thus
obtained, provided that the thickness t is known and remained constant in
the process.

The minimization of the objective function is based on using the MAT-
LAB function “lsqnonlin” which solves nonlinear least-squares problems of
the form given in (9) (Mathworks, 2018). The “lsqnonlin” requires the user-
defined function to compute the vector-valued function:

ψ(d) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(d)

ψ2(d)

ψ3(d)
.
.
.

ψn(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Then, in vector terms, one can restate this optimization problem as:

min
d

||ψ(d)||22 = min
d

(
ψ1(d)

2 + ψ2(d)
2 + ψ3(d)

2 + . . . ψn(d)
2
)
, (11)

where d is a depth vector and ψ(d) is a function that returns a vector
value d = lsqnonlin(ψ(d), d initial) starts at the depth d initial (to be
used only in the first iteration) and finds a minimum of the sum of squares
of the functions described in ψ(d). The minimization is performed using
the Levenberg-Marquardt algorithm which uses a search direction that is
a cross between the Gauss-Newton direction and the steepest descent di-
rection. Any reasonable guess for d works well because there is only one
minimum which is the global minimum (Fig. 2). In Fig. 2, we demonstrate
an example of the objective function space when s = 1km, t = 1km, and ini-
tial guess of d = 1km in case the model parameters are [ t = 9km, d = 5km,
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Fig. 2. A numerical example of the objective function space when s = 1 km, t = 1 km,
and initial guess of d = 1 km in case the model parameters are: t = 9 km, d = 5 km,
σ = 0.5 g/cm3, profile length of 80 km, and sample interval of 1 km.

σ = 0.5 g/cm3, profile length of 80 km, and sample interval of 1 km ]. It is
clear that among the function space, only one minimum is achieved at (it-
eration number 9) where the minimum is 0.0003374 mGal, which is at the
same time as the global minimum. This shows that the function is generally
concave and consequently the algorithm always converges to the minimum.
In this case, any initial guess for d will work well.

Eq. (9) represents a parametric family of curves for different values of
“s” (i.e., different sample spacings) and thus it can be used not only to
determine depth d but also to estimate simultaneously the thickness of the
buried fault t. For a fixed parameter s, the computed depths are plotted
against the thickness values representing a continuous curve. The solution
for the depth and the thickness of buried faulted slab is read at the common
intersection of the curves. Theoretically, any two curves of the parameters
are enough to simultaneously determine d and t. The curves intersect at
the true values of d and t because (9) has only two unknowns. In practice,
more than two values of graticule or sample spacing are desirable because
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of the presence of noise in the data.
Finally, substituting the computed depth dc and thickness tc in (4) as

fixed parameters and applying the least-squares method, we obtain the den-
sity contrast σ(s) for any graticule spacing s as:

σ(s) =
∑ 2s2 [gxx(xi)W (xi, tc, dc, s)]

G[W (xi, tc, dc, s)]2
. (12)

The present method is capable of determining the model parameters,
particularly the depth and the thickness of a buried thick vertically faulted
slab from gravity data given in a small area over the buried structure, i.e.,
from a small segment of the gravity profile around the origin. In addition,
the second horizontal gradient profiles exhibit a zero crossover at the origin
(i.e., x = 0), hence, our method provides a simple way to estimate the hor-
izontal location of the fault.

An automatic interpretation scheme based on the above equations for
analyzing field data is as follows:

1) Digitize the anomaly profile at N data points.

2) Produce a set of second horizontal gradient profiles by applying the sec-
ond horizontal gradient filter with different sample spacing values to the
profile data set. The horizontal distance at which the second gradient
profiles attain their zero value is taken as the origin of the gravity profile
(i.e., x = 0). The default choice of the graticule spacing s is taken as
s = 5 starting from s = 1 sampling interval.

3) For each second horizontal gradient profile, use (9) to determine the
depth d of the buried fault structure for assumed values of thickness t.
The default choice of the thickness values t is taken from 1 to 12 units
every one sampling interval.

4) Construct the “s-curves” by plotting the computed depths against the
thickness values for each s. The solution for the depth and thickness
of buried faulted slab is read at the common intersection of the curves.
The choice of the appropriate graticule spacings s) is based upon the
resolution of the resulted intersected curves. If the intersection is not
clear, the interpreter should use another set of graticule spacings (e.g.
from s equals 6 to 10 sampling units).
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A flowchart based on the above method for analyzing gravity data is
shown in Fig. (3).

Fig. 3. A flowchart based on the present method for analyzing gravity data.

3. Theoretical examples

3.1. Noise free data

A composite synthetic example consisting of the combined gravity effect of
a 2D thick, vertically faulted slab (t = 9 km, d = 5 km, σ = 0.5 g/cm3, pro-
file length = 80 km, and sample interval = 1 km) and a first-order regional
polynomial (Fig. 4) was computed to allow us to demonstrate our method
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Fig. 4. A composite gravity profile consisting of the combined gravity effects due to a
2D thick vertically faulted slab (t = 9 km, d = 5 km, σ = 0.5 g/cm3, profile length of
80 km, and sample interval of 1km) and a regional component represented by a first-order
polynomial.

for estimating the location, density contrast, depth to and thickness of the
faulted thick slab. We produced profiles of the second horizontal gravity gra-
dient using the discrete form of calculation (Eq. (3)) for values of the sample
interval, s, of 1, 2, 3, 4, and 5 km (Fig. 5). The use of the second horizontal
gradient filter has the effect of suppressing the longer wavelength compo-
nents of the data in favor of the shorter wavelength components that are
related to the buried truncated slab. Profiles for values of “s” greater than
5 km could have been calculated but the gradient profiles would continue
to shrink in length due to the inability to calculate the result at locations
close to either end of the profile.

Eq. (9) was applied to each point of the five-second horizontal gradient
gravity profiles, yielding depth solutions for each of the thickness values
that were proposed. The computed depths were plotted against the thick-
ness values to produce the curves shown in Fig. 6. This figure shows the
intersection at the correct location t = 9km and d = 5km. In this case, the
solutions for the depth and thickness are in excellent agreement with the
input model defined above.
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Fig. 5. Profiles of the discrete second horizontal gravity gradients for the composite field
shown in Fig. 4. The gradients were calculated using a 3-point moving sampling spacing.
The profiles represent the results that would be obtained using different gravity sample
values (i.e., s = 1, 2, 3, 4, and 5 km).

Fig. 6. Family of s-curves of thickness t as a function of depth to top d for sample interval
s of 1, 2, 3, 4, and 5km obtained from noise free composite gravity data using the present
approach.
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3.2. Effect of noise

The noise term in the measured signal, traditionally is related to the mea-
surement errors (including instrumental errors). In the context of poten-
tial field analysis, two more types of noise are present, namely, earth noise
(contribution from other neighboring undesired sources) and model errors
(results from simplifying the real complex model). A common property of
noise from all sources is the presence of significant power in the high fre-
quency band. In the limiting case, we have white noise which has equal
power in the entire frequency band of the observation (Naidu and Mathew,
1998). The measurement noise is more likely to be white noise. On the
above basis, we implemented white noise in the simulation study. In our
work, the “awgn” MATLAB function is used and the noise power is imple-
mented. In this case, the SNR = 20 log10(X

2/Y 2), where X represents the
input signal and Y represents the noise. The SNR in the “awgn” function
used specifies the (signal/noise) / sample in dB. The power used in “awgn”
is measured from the input observed regularly spaced data X(N). In this

Fig. 7. A noisy composite gravity profile consisting of the combined effects due to a 2D
thick, vertically faulted slab (t = 9 km, d = 5 km, σ = 0.5 g/cm3 is the density contrast
of the slab relative to the host, profile length = 80 km, and sample interval = 1 km) and
a regional component represented by a first-order polynomial.
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subsection, we investigate the effect of adding random noise.
The computed gravity effect of Fig. 4 was contaminated with 20 dB ran-

dom noise (Fig. 7). The noisy composite gravity data thus obtained were
subjected to the second horizontal gravity gradients filter to produce noisy
second horizontal gravity gradients (Fig. 8). The second horizontal gravity
gradients due to noisy data are more dominated in the right side of the
Fig. 8 as compared to the left side. This is due to the fact the truncated
slab is located below the positive profile values w.r.t. the start profile, i.e.
zero crossing where the main part of the gravity effect of the truncated slab
is emphasized. The gravity data below the positive is greatly affected by the
second horizontal gradient filter compared with gravity data located below
the negative profile side. Adapting the same interpretation technique de-
scribed above, the results are shown in Fig. 9. The “s-curves” intersect each
other at the location t = 8.85 km and d = 4.94 km. This demonstrates that
our method can give reliable results even when the gravity data contains
measurement errors or geological noise.

Fig. 8. Profiles of the discrete noisy second horizontal gravity gradients for the composite
field shown in Fig. 7. The gradients were calculated using a 3-point sampling spacing.
The profiles represent the results that would be obtained using different gravity sample
values (i.e., s = 1, 2, 3, 4, and 5 km).
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Fig. 9. Family of s-curves of t as a function of d for s = 1, 2, 3, 4, and 5 km as obtained
from the noisy composite gravity data using the present approach.

4. Discussion

The present method assumes that the gravity data are regularly spaced and
solution of Eq. 9) yields the exact value of depth and thickness when using
synthetic data. Adding random noise to the synthetic data results in max-
imum uncertainties of ± 2.0 percent for parameters t and d.

For large s values, the number of samples on the second horizontal gra-
dient curves decreases on both ends, which in turn may result in an instable
interpretation curves. However, since the interpretation requires only a
relatively short length profile, the problem may be solved effectively and
economically by increasing the number of measurements made within the
restricted length of the profile. At the same time, using a relatively short
length of profile, results in a very high rejection of neighboring disturbances.
The above explanation helps the user choose the proper s to use in Eq. (10).
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The disadvantage of the present least-squares second horizontal gradient
“s-curves” method is that it cannot be applied in complex geologic situa-
tions or areas with large-scale topographic and near-surface density varia-
tions. In this case, there is instability of the proposed inversion on the base
of intersections of “s-curves”.

5. Field example

To illustrate the practical application of the theory developed in the previ-
ous section, a field example from the Central Valley of Chile (Garland, 1970,
the Figure 7.8, p. 116) is presented. A Bouguer anomaly profile across an
outcropping fault structure in the basin is shown in Fig. 10 (Lomnitz, l959).
The depth to the fault interpreted from surface geology and drilling infor-
mation is about 0.15 km and the thickness estimated by Lomnitz (l959)
using the Bouguer formula for a slab is about 2 km. The gravity profile of
16.55 km length has been digitized at an interval of 0.207 km. The Bouguer
gravity anomalies thus obtained have been subjected to a separation tech-
nique using the second horizontal gradient method. Filters were applied

Fig. 10. Observed gravity anomaly over a 2D thick vertically faulted structure in the
Central Valley of Chile (after Lomnitz, l959).
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in four successive windows (s = 2.482, 2.689, 2.896, 3.103 km). In this way,
four second horizontal gradient profiles were obtained (Fig. 11). The same
procedure described for the synthetic examples was used to estimate the
depth and the thickness of the fault. The results are shown in Fig. 12.

The result of the present study (d = 0.19 km and t = 2.38 km), based on
the least-squares method, and that obtained from surface geology, drilling
information, and application of the Bouguer formula for a horizontal slab
are in a very good agreement.

6. Conclusions

The problem of determining the depth and the thickness of a 2D thick ver-
tically faulted slab from second horizontal gradient gravity effects can be
solved using the least-squares “s-curves” method described in this paper.
The method involves fitting the response of a 2D thick vertical fault model
convolved with the same second horizontal gradient filter as applied to the

Fig. 11. Second horizontal gravity gradients due to a 2-D thick, vertically faulted struc-
ture, the Central valley of Chile for s = 2.482, 2.689, 2.896, 3.103 km.
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Fig. 12. Family of window curves of t as a function of d for s = 2.482, 2.689, 2.896,
3.103 km as obtained from the observed gravity anomaly due to a 2-D thick, vertically
faulted structure, the Central valley of Chile, using the present approach.

observed data. Since the second horizontal gradient filter strongly attenu-
ates any long wavelength regional component in the data, our method can be
applied not only to data that have been pre-processed to remove a regional
component but also to the measured Bouguer gravity data. The advantages
of the present method over previous techniques are: (1) the least-squares
“s-curves” method is a semi-automatic and computationally simple, and
(2) the method is relatively stable when reasonable levels of noise is in-
cluded in the observed data. The depth and thickness obtained by present
method might be used to gain geologic insight concerning the subsurface.
Synthetic and field examples illustrated the efficacy of the present method.
The disadvantage of the present least-squares second horizontal gradient “s-
curves” method is that it cannot be applied in complex geologic situations
or areas with large-scale topographic and near-surface density variations.
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