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Abstract: In this paper, an inversion method based on the Marquardt’s algorithm is

presented to invert the gravity anomaly of the simple geometric shapes. The inversion

outputs are the depth and radius parameters. We investigate three different shapes, i.e.

the sphere, infinite horizontal cylinder and semi-infinite vertical cylinder for modeling.

The proposed method is used for analyzing the gravity anomalies from assumed models

with different initial parameters in all cases as the synthetic data are without noise and

also corrupted with noise to evaluate the ability of the procedure. We also employ this

approach for modeling the gravity anomaly due to a chromite deposit mass, situated

east of Sabzevar, Iran. The lowest error between the theoretical anomaly and computed

anomaly from inverted parameters, determine the shape of the causative mass. The

inversion using different initial models for the theoretical gravity and also for real gravity

data yields approximately consistent solutions. According to the interpreted parameters,

the best shape that can imagine for the gravity anomaly source is the vertical cylinder

with a depth to top of 7.4 m and a radius of 11.7 m.

Key words: chromite deposit, gravity anomaly, Marquardt’s algorithm, simple geometric
shapes

1. Introduction

Non-uniqueness is a feature in the inverse modeling of the residual grav-
ity anomaly as can assign a set of the measured gravity field data on the
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ground to the geometrical distributions of the subsurface mass with var-
ious shapes or physical parameters such as density and depth. One way
to eliminate this ambiguity is to put a suitable geometry to the anoma-
lous body with a known density followed by inversion of gravity anomalies
(Chakravarthi and Sundararajan, 2004). Although simple models may not
be geologically realistic, they are usually are sufficient to analyze sources of
many isolated anomalies (Abdelrahman and El-Araby, 1993b). The interpre-
tation of such an anomaly aims essentially to estimate the parameters such
as shape, depth, and radius of the gravity anomaly causative body such as
geological structures, mineral mass and artificial underground structures.

Several graphical and numerical methods have been developed for ana-
lyzing residual gravity anomalies caused by simple bodies, such as Saxov
and Nygaard (1953) and Bowin et al. (1986). The methods include, for ex-
ample, Fourier transform (Odegard and Berg, 1965; Sharma and Geldart,
1968); Mellin transform (Mohan et al., 1986); Walsh transforms techniques
(Shaw and Agarwal, 1990); ratio techniques (Hammer, 1977; Abdelrahman
et al.,1989); least-squares minimization approaches (Gupta, 1983; Lines and
Treitel, 1984; McCowan and Abdelrahman, 1990; Abdelrahman et al., 1991)
and different neural networks (Salem et al., 2001; Osman et al., 2006, 2007;
Al-Garni, 2013; Eshaghzadeh and Kalantari, 2015; Eshaghzadeh and Ha-
jian, 2018); effective quantitative interpretations using the least-squares
method (Gupta, 1983) based on the analytical expression of simple moving
average residual gravity anomalies are yet to be developed. Abdelrahman
and El-Araby (1993a) introduced an interpretive technique based on fitting
simple models convolved with the same moving average filter as applied to
the measured gravity. A simple method proposed by Essa (2007) is used to
determine the depth and shape factor of simple shapes from residual gravity
anomalies along the profile. Another automatic method, the least-squares
method, was proposed by Asfahani and Tlas (2008), by which the depth
and amplitude coefficient can be determined.

In this paper, a simultaneous non-linear inversion based on Marquardt
optimization is developed to estimate the radius and depth parameters of
the simple structures such as sphere, infinite horizontal cylinder and semi-
infinite vertical cylinder. The Marquardt inversion method has been used
for modeling the geological structures such as faulted beds (Chakravarthi
and Sundararajan, 2005), anticlinal and synclinal structures (Chakravarthi
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and Sundararajan, 2007, 2008), multiple prismatic structures (Chakravarthi
and Sundararajan, 2006). The validity of the method is tested on synthetic
gravity data with and without random noise and also on a real gravity data
set from Iran.

2. Gravity of simple geometry

In gravity, fields of many simple bodies are symmetric about the location
of the source. For example, the general gravity g effect caused by simple
models (such as a sphere, an infinite horizontal cylinder, and a semi-infinite
vertical cylinder as shown in Fig. 1) at point p(xi, z) is given as (Abdelrahman
et al., 1989):

g(xi, z, q) = K
zm

(x2i + z2)q
, (1)

where z is the depth, m = 1 for a sphere or a horizontal cylinder and m = 0
for a vertical cylinder, q,is a value (shape factor) characterizing the nature
of the source (q = 0.5 for a vertical cylinder, q = 1 for a horizontal cylinder,
and q = 1.5 for a sphere) and K is an amplitude factor related to the radius
R and density contrast ρ of the source, as:

K =

⎧⎪⎨
⎪⎩
(4/3)πGρR3 for a sphere,
2πGρR2 for a horizontal cylinder,
πGρR2 for a vertical cylinder,

(2)

Fig. 1. (a) sphere and infinite horizontal cylinder models, (b) semi-infinite vertical cylinder
model.
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where G is the universal gravitational constant. For optimizing the gravity
anomaly using Marquardt inversion, the gravity derivatives than the radius
(radius derivative) and depth (vertical derivative) must be calculated. The
radius and vertical derivative for the sphere model can be computed by
equations 3 and 4, respectively, as:

∂g

∂R
= 4πGρR2

[
z

(x2 + z2)3/2

]
, (3)

∂g

∂z
=

4

3
πGρR3

[
x2 − 2z2

(x2 + z2)5/2

]
, (4)

corresponding expressions for the horizontal cylinder model can be written
by:

∂g

∂R
= 4πGρR

[
z

(x2 + z2)

]
, (5)

∂g

∂z
= 4πGρR2

[
x2 − z2

(x2 + z2)2

]
, (6)

and for the vertical cylinder model the radius and vertical derivatives, re-
spectively, give as following relationship:

∂g

∂R
= 2πGρR

[
1

(x2 + z2)1/2

]
, (7)

∂g

∂z
= −πGρR2

[
z

(x2 + z2)3/2

]
. (8)

3. Methodology

The inversion of gravity anomalies is implicitly a mathematical process, try-
ing to fit the computed gravity anomalies to the theoretical ones in the least-
squares approach and then estimating the two parameters namely depth (z)
and radius (R). The process of the inversion begins with computing the the-
oretical gravity anomaly of the simple geometry using equation (1).

The difference between the theoretical gravity gobs(xi), and calculated
gravity anomaly of an initial assumed model gcal(xi), can be estimated by
a misfit function, J (Chakravarthi and Sundararajan, 2007), as:
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J =
N∑
i=1

[gobs(xi)− gcal(xi)]
2 , (9)

N is the number of theoretical gravity data. We have employed the Mar-
quardt’s algorithm (Marquardt, 1963) given by Chakravarthi and Sundarara-
jan (2006) for minimizing the misfit function until the normal equations can
be solved for over all modifications of the two unknowns structural param-
eters (depth and radius), as:

N∑
i=1

2∑
k=1

∂g(xi)

∂aj

∂g(xi)

∂ak
(1 + δλ) dak =

n∑
i=1

[gobs(xi)− gcal(xi)]
∂g(xi)

∂aj
,

for j = 1, 2 ,

(10)

where dak, k = 1 and 2 are the amendments to the two model parameters
of the simple geometry structure, i.e. depth and radius. Partial derivatives
required in the above system of equation (10) are calculated by the equations
(3) to (8) according to the shape of the considered model. Also,

δ =

{
1 for k = j,

0 for k �= j,

and λ is the damping factor. The advancements, dak, k = 1 and 2 evalu-
ated from equation (10) are then added to or subtracted from the available
parameters estimated from last iteration and the process repeats until the
misfit, J , in equation (9) descends below a predetermined allowable error
or the damping factor obtains a large value which is greater than allowable
amount or the repetition continues until the end of the considered number
for iterations (Chakravarthi and Sundararajan, 2008).

4. Theoretical examples

In this section, the performance of the foregoing method are investigated for
the gravity anomalies of the three simple geometric models, i.e. sphere, infi-
nite horizontal cylinder and semi-infinite vertical cylinder, with and without
added random noise.
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4.1. Sphere model

Fig. 2a shows the theoretical and calculated gravity field variations with
1 m interval along a 100 m profile due to an initial sphere model with the
parameters z = 25 m and R = 15 m and an assumed sphere model with
parameters z = 30 m and R = 12 m (Fig. 2b) where the maximum is the
center of the profile. The density contrast is given as ρ = 1000 kg/m3.
Hence, the input initial parameters are z = 30 m and R = 12 m which with
the theoretical gravity field are exerted to the inversion algorithm coded in
Matlab. During inversion, ρ is constant and the model parameters, z and R
are improved iteratively. The allowable values for error (misfit, J), iteration
and damping factor (λ) are 0.00000001mGal, 100 and 15, respectively. The
initial damping factor is 0.5.

The misfit, J , reduces intensely from its initial value of 0.25 mGal at
the first iteration to 0.0014 mGal at the end of the 5th iteration and then
gradually reaches 0.000000034 mGal after the 9th iteration and its value at
the 10th iteration becomes 0.00000000014 mGal which is smaller than the

Fig. 2. (a) Theoretical and calculated gravity due to, (b) initial and assumed sphere
models.

158



Contributions to Geophysics and Geodesy Vol. 49/2, 2019 (153–180)

allowable error value (Fig. 3c). The iteration terminated at 10th echo and
therefore the estimated parameters at 9th iteration are the final results of
the inversion.

Fig. 3a and 3b illustrates the variations of the model parameters z and
R during inversion with increasing the iteration number. The conclusive
obtained parameters values are z = 24.998 m and R = 15.001. Fig. 4a
shows the computed gravity anomaly from the inferred structure which is
shown in Fig. 4b. The error value in the estimation of the model parameters,
that is, depth and radius are 0.008 m and within 0.007 m, respectively.

Fig. 3. Improvements of the structures parameters and misfit function versus iteration
number for the assumed sphere model in Fig. 2.

The efficacy of error has been evaluated by adding 10% random noise to
the gravity response of the initial sphere model (Fig. 5a) using the following
expression:

gnois(xi) = gobs(xi) [(1 +RND(i)− 0.5) × 0.1] , (11)

where gnois(xi) is the noise corrupted synthetic data at xi, and RND(i) is
a pseudorandom number whose range is between 0 to 1.

The initial values for the parameters of the assumed sphere model are
given as z = 22m and R = 12.5 m (Fig. 5b). The allowable values for error
(misfit, J), iteration and damping factor (λ) are 0.00001 mGal, 100 and 15,
respectively. The initial damping factor is 0.2. The misfit, J , reduces rapidly
from its initial value of 0.061 mGal at the first iteration to 0.00088 mGal
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Fig. 4. (a) Theoretical and calculated gravity due to, (b) initial and estimated sphere
models.

Fig. 5. (a) 10% noise corrupted theoretical gravity and calculated gravity due to, (b) ini-
tial and assumed sphere models.
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at the end of the 6th iteration and then gradually reaches 0.000465 mGal
after the 10th iteration and this value remained constant until the last
iteration (Fig. 6c). After completing the iteration number, the damping
factor, depth and radius attained 0.0000976, 24.97 m and 14.98 m values,
respectively (Fig. 6a and 6b). The amount of error in the estimation of the
model parameters, that is, depth and radius are 0.12m and within 0.133m,
respectively.

Fig. 6. Improvements of the structures parameters and misfit function versus iteration
number for the assumed sphere model in Fig. 5.

Fig. 7a shows the computed gravity anomaly from the inferred structure
which is shown in Fig. 7b. The numerical results for the free noise data and
contaminated data with the random noise are summarized in Tables 1 and
2, respectively.

Table 1. Numerical results evaluated from the initial and assumed structural parameters
for the each three models.

Model Sphere Horizontal cylinder Vertical cylinder

Parameter Depth (m) Radius (m) Depth (m) Radius (m) Depth (m) Radius (m)

Initial 25 15 30 10 30 10

Assumed 30 12 35 7 34 8

Estimated 24.998 15.001 29.999 9.997 30 10

Error % 0.008 0.007 0.003 0.03 0 0
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Table 2. Numerical results evaluated from the initial and assumed structural parameters
for the each three models after adding 10% noise to the gravity response of the initial
parameters.

Model Sphere Horizontal cylinder Vertical cylinder

Parameter Depth (m) Radius (m) Depth (m) Radius (m) Depth (m) Radius (m)

Initial 25 15 30 10 30 10

Assumed 22 12.5 27 12 27 11.8

Estimated 24.97 14.98 30.035 9.96 29.84 9.92

Error % 0.12 0.133 0.12 0.4 0.53 0.8

To test the stability of the Marquardt inversion, two different initial
sphere models were assumed to investigate the gravity anomalies related to
them with and without a random noise of 10% (Table 3 and 4). The inferred
structural parameters simulate almost the assumed ones.

Table 3. Numerical results evaluated from the various initial and assumed structural
parameters for the each three models.

Model Sphere Horizontal cylinder Vertical cylinder

Parameter Depth Radius Depth Radius Depth Radius Depth Radius Depth Radius Depth Radius
(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

Initial 35 18 27 10 34 15 27 8 20 15 45 25

Assumed 42 11 19 18 25 10 40 16 13 21 36 30

Estimated 35 18.001 26.997 10 33.998 15.002 27 8.001 20 15 45.003 25

Error % 0 0.006 0.01 0 0.006 0.013 0 0.013 0 0 0.007 0

Table 4. Numerical results evaluated from the various initial and assumed structural
parameters for the each three models after adding 10% noise to the gravity response of
the initial parameters.

Model Sphere Horizontal cylinder Vertical cylinder

Parameter Depth Radius Depth Radius Depth Radius Depth Radius Depth Radius Depth Radius
(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

Initial 35 18 27 10 34 15 27 8 20 15 45 25

Assumed 42 11 19 18 25 10 40 16 13 21 36 30

Estimated 35.02 18.04 27.043 9.987 33.76 14.87 27.08 7.96 19.95 14.96 45.063 25.04

Error % 0.057 0.22 0.16 0.13 0.71 0.87 0.3 0.5 0.25 0.27 0.14 0.16
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Fig. 7. (a) 10% noise corrupted theoretical gravity and calculated gravity due to, (b) ini-
tial and estimated sphere models.

4.2. Horizontal cylinder model

Fig. 8a shows the theoretical and calculated gravity field variations with
1m interval along a 100m profile due to an initial horizontal cylinder model
with the parameters z = 30 m and R = 10 m and an assumed horizontal
cylinder model with parameters z=35 m and R=7 m (Fig. 8b) where the
maximum is the center of the profile and the density contrast is given as
ρ = 1000 kg/m3. Hence, the input initial parameters are z = 35 m and
R = 7 m. During inversion, ρ is constant and the model parameters, z and
R are progressed iteratively. The allowable values for error (misfit, J), iter-
ation and damping factor (λ) are 0.00000001 mGal, 50 and 12, respectively.
The initial damping factor is 0.5.

The misfit, J , reduces intensely from its initial value of 0.265 mGal at
the first iteration to 0.0013 mGal at the end of the 6th iteration and then
gradually reaches 0.00000000753 mGal at the 15th iteration (Fig. 9c). Be-
cause the misfit, J , obtained a value smaller than the allowable error value
at the 15th echo, the iteration stopped and therefore the depth and radius
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Fig. 8. (a) Theoretical and calculated gravity due to, (b) initial and assumed horizontal
cylinder models.

estimates at 14th iteration are the best response of the inverse modeling
process.

Fig. 9a and 9b shows the variations of the model parameters z and R
versus the iteration number. The conclusive obtained parameters values

Fig. 9. Improvements of the structures parameters and misfit function versus iteration
number for the assumed horizontal cylinder model in Fig. 8.
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are z = 29.999 m and R = 9.997. Fig. 10a exhibits the computed gravity
anomaly from the resulted model which is shown in Fig. 10b. The error
value in the appraisal of the model parameters, that is, depth and radius
are 0.003 m and about 0.03 m, respectively.

Fig. 10. (a) Theoretical and calculated gravity due to, (b) initial and estimated horizontal
cylinder models.

The efficacy of error has been evaluated by adding 10% random noise to
the gravity response of the initial horizontal cylinder model (Fig. 11a) using
the equation (11). The initial values for the parameters of the assumed
horizontal cylinder model are given as z = 27 m and R = 12 m (Fig. 11b).
The allowable values for error (misfit, J), iteration and damping factor (λ)
are 0.00001 mGal, 100 and 15, respectively. The initial damping factor is
0.2. The misfit, J , reduces quickly from its initial value of 0.247 mGal at
the first iteration to 0.0016 mGal at the end of the 4th iteration and then
incrementally attains 0.00074 mGal after the 79th iteration (Fig. 12c). The
iteration finished at the 79th iteration where the damping factor value ex-
ceeded from the allowable value. The final values of the evaluated depth
and radius are 30.035 m and 9.96 m, respectively (Fig. 12a,b). The error
value in the estimation of the model parameters, that is, depth and radius
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Fig. 11. (a) 10% noise corrupted theoretical gravity and calculated gravity due to, (b) ini-
tial and assumed horizontal cylinder models.

are about 0.12 m and 0.4 m, respectively.
Fig. 13a shows the generated gravity anomaly of the final structure that

is derived from the estimated parameters as shown in Fig. 13b. The nu-
merical results for the gravity data, with and without random noise are
tabulated in Tables 2 and 1, respectively.

Fig. 12. Improvements of the structures parameters and misfit function versus iteration
number for the assumed horizontal cylinder model in Fig. 11.
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Fig. 13. (a) 10% noise corrupted theoretical gravity and calculated gravity due to, (b) ini-
tial and estimated horizontal cylinder models.

For evaluating the convergence of the Marquardt inversion, two differ-
ent initial horizontal cylinder models were assumed to consider the gravity
anomalies related to them with and without a random noise of 10% (Ta-
ble 3 and 4). The estimated structural parameters approximately mimic
the supposed ones.

4.3. Vertical cylinder model

The theoretical and calculated gravity field variations with 1 m interval
along a 100 m profile due to an initial infinite vertical cylinder model with
the parameters z = 30m and R = 10m is shows in Fig. 14a and an assumed
infinite vertical cylinder model with parameters z = 34 m and R = 8 m
is shown in Fig. 14b, as the maximum is the center of the profile and the
density contrast is given as ρ = 1000kg/m3. Hence, the input initial param-
eters are z = 34m and R = 8m. During inversion, ρ is fixed and the model
parameters, z and R are amended iteratively. The allowable values for error
(misfit, J), iteration and damping factor (λ) are 0.0000000001mGal, 50 and
15, respectively. The initial damping factor is 0.5.
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Fig. 14. (a) Theoretical and calculated gravity due to, (b) initial and assumed vertical
cylinder models.

The misfit, J , decreases intensely from its initial value of 0.053 mGal
at the first iteration to 0.00064 mGal at the end of the 5th iteration and
then gradually reaches 0.000000000675mGal at the 9th iteration and finally
attains zero at the end of 10th iteration (Fig. 15c). The depth and radius
estimates at 9th iteration are the final evaluated results.

Fig. 15. Improvements of the structures parameters and misfit function versus iteration
number for the assumed vertical cylinder model in Fig. 14.
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Fig. 15a,b shows the variations of the model parameters z and R versus
the iteration number. The values of the final obtained parameters are z =
30 m and R = 10. Fig. 16a displays the calculated gravity anomaly from
the resulted model which is shown in Fig. 16b.

Fig. 16. (a) Theoretical and calculated gravity due to, (b) initial and estimated vertical
cylinder models.

The efficiency of the Marquardt inversion method has been investigated
by adding 10% random noise to the gravity response of the initial infinite
vertical cylinder model (Fig. 17a) using the equation (11). The initial values
for the parameters of the assumed vertical cylinder model are given as z =
27 m and R = 11.8 m (Fig. 17b). The allowable values for error (misfit, J),
iteration and damping factor (λ) are 0.0001 mGal, 50 and 12, respectively.
The initial damping factor is 0.2. The misfit, J , abates sharply from its
initial value of 0.075 mGal at the first iteration to 0.00063 mGal at the end
of the 4th iteration and then progressively attains 0.000241 mGal after the
9th iteration as this value remained constant until the iteration number
finished (Fig. 18c). The final values of the evaluated depth and radius are
29.84 m and 9.92 m, respectively (Fig. 18a,b). The amount of error in the
estimation of the model parameters, that is, depth and radius are about
0.53 m and 0.8 m, respectively.
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Fig. 17. (a) 10% noise corrupted theoretical gravity and calculated gravity due to, (b) ini-
tial and assumed vertical cylinder models.

Fig. 18. Improvements of the structures parameters and misfit function versus iteration
number for the assumed vertical cylinder model in Fig. 17.

Fig. 19a shows the generated gravity anomaly of the final structure which
is inferred from the estimated parameters as shown in Fig. 19b. The nu-
merical results of the gravity data analysis, with and without random noise
are given in Tables 2 and 1, respectively.
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Fig. 19. (a) 10% noise corrupted theoretical gravity and calculated gravity due to, (b) ini-
tial and estimated vertical cylinder models.

To examine the constancy and efficiency of the Marquardt inversion, two
different initial vertical cylinder models were presumed to analyze the grav-
ity anomalies related to them with and without a random noise of 10%
(Table 3 and 4). The estimated structural parameters are almost corre-
sponding to the assumed ones.

5. Field example

The site under survey is located in the east of Iran, around Sabzevar. The
outcomes of the stones in the this area are mostly the alkali and ultrabasic
igneous rocks and ophiolite as the chromite mineralization can be found in
these rocks (Fig. 20).

In this region, the chromite deposits are massive. Fig. 21 shows the
Bouguer gravity anomalies map of the area under consideration. It is worth
mentioning, the average density computed by the Nettleton’s graphical
method for this area is given as 2.8 gr/cm3. The value obtained for the
density has been considered for the Bouguer correction. The gravity mea-
surement was done along 12 profiles with a station interval of about 10 m.
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Fig. 20. The geological map of the region under investigation adapted from the Sabzevar
1/250000 geological map (Geological Survey & Mineral Explorations of Iran – GSI, 2019).

The gravity data covering a 120 × 100 m area of the Sabzevar region.
For reaching to the residual gravity anomalies which is our desire, the

regional gravity anomalies must be removed using a trend (degree 2) from
the Bouguer anomaly. Fig. 22 displays the map of the computed local grav-

Fig. 21. The Bouguer gravity anomalies map of the area under consideration.
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ity field. The host rock of the chromite have the positive density contrast
than the surrounding formation, therefore on the residual gravity anoma-
lies map is appeared as the positive anomaly. The average density of the
chromite mass is about 4.5gr/cm3, whereas the density of the encompassing
formation is between 3 gr/cm3 to 3.5 gr/cm3. The positive gravity anomaly
related to the chromite deposit has been outlined with gray in Fig. 22. Here,
we analyze the residual gravity field variations along the profile AA′ which
runs across the chromite mineral mass in a approximately W–E direction as
is shown in Fig. 22. The length of profile is 42 m and the gravity sampling
interval is given as 2 m.

Fig. 22. The local gravity anomalies map. Gravity data from the chromite mass outlined
in gray. Profile AA′ has been shown on the positive gravity anomaly in a approximately
W–E direction.

We applied the Marquardt inversion for the real gravity data where the
causative mass shape was assumed as a sphere, an infinite horizontal cylin-
der and a semi-infinite vertical cylinder, separately. The initial values of the
depth and radius parameters are given as z = 50 m and R = 15 m for the
sphere model, z = 40 m and R = 25 m for the infinite horizontal cylinder
model and z = 25 m and R = 15 m for the semi-infinite vertical cylinder
model (Table 5). For each three supposed structure under consideration,
the assigned values for misfit (J), iteration and damping factor (λ) are
0.001 mGal, 100 and 20, respectively. The variability of each shape param-
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eter and misfit of the sphere, infinite horizontal cylinder and semi-infinite
vertical cylinder geometry models against the iteration number during in-
version process are shown in Figs. 23–25, respectively.

The performed iteration for the sphere, infinite horizontal cylinder and
semi-infinite vertical cylinder configurations are 89, 74 and 77, respectively,
before it was ceased, as in the end of these iteration numbers, the damping
factor obtained a value greater than the allowable value. The depth and
radius parameters and misfit abided constant after the 9th iteration in the
case of the sphere shape, the 11th iteration in the case of the horizontal
cylinder shape and the 6th iteration in the case of the vertical cylinder
shape. The inverted structural parameters are given in Table 5.

Table 5. Inferred numerical results from analyzing the real gravity data along the profile
AA′ cross-section and the gravity response of the assumed parameters for the each three
structural shapes.

Model Sphere Horizontal cylinder Vertical cylinder

Parameter Depth (m) Radius (m) Depth (m) Radius (m) Depth (m) Radius (m)

Assumed 50 15 40 25 25 15

Estimated 24.7 19.8 8.1 11.6 7.4 11.7

Misfit (mGal) 1.192 0.176 0.375

The theoretical gravity anomaly along profile AA′ and modeled gravity
anomalies corresponding to the estimated parameters in the latest misfit
function values are shown in Fig. 26. Since the least misfit function value

Fig. 23. Modifications of the structures parameters and misfit function versus iteration
number based on assumed parameters for the sphere model as given in Table 5.
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Fig. 24. Modifications of the structures parameters and misfit function versus iteration
number based on assumed parameters for the horizontal cylinder model as given in Table 5.

Fig. 25. Modifications of the structures parameters and misfit function versus iteration
number based on assumed parameters for the vertical cylinder model as given in Table 5.

(minimum error) indicate the best shape for the anomaly sources, with at-
tention to Table 5, the horizontal cylinder model with a misfit value of
0.176mGal, a depth of 8.1m and a radius of 11.55m must be the best form
that can imagine for the anomaly causative body. But the computed struc-
tural parameter demonstrate a unrealistic structure, because if a subsurface
source with the horizontal cylinder feature whose depth be 8.1 m, the max-
imum value which the radius can possess, is equal the depth of the center
of the model, while the inverted radius for the horizontal cylinder model is
11.6 m. The average values of the depth and radius parameters estimated
by the Marquardt inversion for the vertical cylinder model are 7.45 m and
11.7 m and for the sphere model are 24.8 m and 19.9 m, respectively. There
is a sharp discrepancy between the observed gravity (green curve in Fig. 26)
and computed gravity response based on the inverted sphere model param-
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Fig. 26. The observed gravity along the profile AA′ (green curve) and inverted gravity
from the interpreted parameters for the assumed sphere model (red curve), horizontal
cylinder model (blue curve) and vertical cylinder model (black curve).

eters (red curve in Fig. 26). As a result, the obtained value for the misfit, is
larger than two other models and indicate the gravity anomaly source can’t
be sphere shape. Therefore, the best suitable geometric shape which can
consider for the anomaly causative mass, i.e. chromite deposit, is the verti-
cal cylinder form, because obtained misfit for the vertical cylinder model is
smaller than one calculated for the sphere model.

The permanency and isotropy of the interpreted parameters from the
real gravity data were investigated using different assumed values for the
each three case of the models. The input and output values are summarized
in Table 6. The estimated structural parameters illustrate a very slight dif-
ferences that confirm the stability of the method.

The Euler deconvolution method is a common technique in potential
fields study which is widely used for estimating the depth of the anomaly

Table 6. Inferred numerical results from analyzing the real gravity data along the profile
AA′ cross-section and the gravity response of the different assumed parameters for the
each three structural shapes.

Model Sphere Horizontal cylinder Vertical cylinder

Parameter DepthRadiusDepthRadiusDepthRadiusDepthRadiusDepthRadiusDepthRadius
(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

Assumed 28 10 55 30 35 20 30 15 18 12 10 15

Estimated 24.8 19.7 24.8 20.1 8.1 11.5 8.1 11.6 7.5 11.7 7.4 11.7

Misfit (mGal) 1.191 1.194 0.175 0.176 0.376 0.375

Iteration 95 85 71 64 67 53
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source (Thompson, 1982; Reid et al., 1990; Barbosa and Silva, 2011). In
this study, for comparison the depth estimates from gravity data, we have
employed the Euler method for calculating the depth of the chromite min-
eral mass by choosing a structure index of 1 and a window size of 5 × 5
points. Fig. 27 show the solutions obtained from Euler deconvolution as
plotted on the residual gravity anomaly map. The Euler solutions located
on the gravity anomaly present a depth between 5 to 10 m for the buried
deposit.

Fig. 27. The residual gravity anomalies overlaid by solutions of the 3D Euler method.

6. Conclusions

In this paper, we have introduced a optimization approach based on the Mar-
quardt’s algorithm for the inverse modeling of the residual gravity anomaly
due to the simple geometric shapes, i.e. sphere, infinite horizontal cylinder
and semi-infinite vertical cylinder. To check the constancy of the procedure
and the convergency of the parameters attained from the Marquardt inver-
sion, the free-noise and noise-impregnated theoretical gravity data related
to the different initial models were used in each case and it was eventuated
that the inversion yields almost the same solutions in all cases. Therefore,
the stable and accurate solutions verify the reliability and applicability of
the Marquardt’s algorithm as a powerful and useful inverse modeling tools.
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The method was applied for estimating the structure parameters and
determining the geometric shape using the gravity anomaly of a chromite
deposit from Iran. The minimum misfit value was considered as a criterion
for selecting the best mass shape, provided that the estimated parameters
depict a acceptable structure naturally. The amount of misfit obtained for
the assumed sphere models after 95 and 85 iterations is 1.191 mGal and
1.194 mGal, for assumed horizontal cylinder models after 71 and 64 iter-
ations is 0.175 mGal and 0.176 mGal and for assumed vertical cylinder
models after 67 and 53 iterations is 0.376 mGal and 0.375 mGal, respec-
tively. Although the lowest estimated misfit is related to the horizontal
cylinder model, but with attention to the inferred parameters for the hor-
izontal cylinder models from the inversion, that is an average depth and
radius of 8.1m and 11.55m respectively, these amounts do not demonstrate
a subsurface body. The inverted gravity from the final interpreted param-
eters of this procedure for various assumed vertical cylinder models is very
close to the real gravity along profile AA′ cross-section. Therefore, it can be
found that the anomaly causative mass shape is approximately the vertical
cylinder form geometrically and depth and radius of the deposit are about
7.4m and 11.7m. This evaluated depth has good conformity with the Euler
solutions.
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