
Contributions to Geophysics and Geodesy Vol. 49/2, 2019 (109–132)

Relaxation time spectra of basaltic lavas
between 500–1150 ◦C reveal patterns of
Kramers–Kronig inconsistency of the
complex viscoelastic shear modulus
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Abstract: An important, yet until now neglected, aspect of the viscoelastic behaviour of

lavas is the Kramers–Kronig consistency of their complex viscoelastic shear modulus. The

most general linear viscoelastic model – the generalized Maxwell body with continuous

relaxation time spectrum – produces a consistent storage and loss modulus, as can be

verified by Kramers–Kronig formulae. We reprocessed the original datasets of the high-

precision laboratory data by James et al. (2004) supplied as pairs of magnitude of the

complex viscoelastic shear modulus and the loss angle. We introduce the magnitude-borne

and loss-angle-borne logarithmic relaxation time spectra and their ratio as a suitable

indicator of the linear viscoelastic inconsistency. The basaltic lavas from Etna, Hawai’i

and Vesuvius have shown a general convergence to the ideal consistency with increasing

temperature, although each sample with an individual inconsistency pattern. The biggest

surprise is the inconsistency ratio rising to ∼20 in Etna 1992 top sample at 786 ◦C. Such

a high inconsistency level still waits for an explanation and for the discoveries of its

class-mates either in laboratory or field experiments.

Key words: viscoelasticity, generalized Maxwell body, Kramers–Kronig relationships,
relaxation time spectrum, viscoelastic modulus inconsistency

1. Introduction

The basis for our curret work is provided by the study of James et al. (2004).
The amount and the quality of the laboratory viscoelastic data prompted
us to reprocess it again, focusing on the phenomenon of viscoelastic incon-
sistency not addressed in the original study. We shall briefly summarize its
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essence relevant to our study in the sequel.
The basaltic lava samples from Etna, Hawai’i and Vesuvius, heated up

to temperatures between ∼ 500 ◦C and 1150 ◦C and fixed between Al rods
of the apparatus (Bagdassarov and Dingwell, 1993), were subject to small
forced harmonic torques (∼10−3Nm) generated by a synthesiser at frequen-
cies between 0.002 and 20 Hz. The angular deformation across the sample
was measured by pairs of capacitive pick-ups responding to the movement
of pure iron plates located at the ends of the Al wings of the rods. The shear
modulus and phase difference between the applied torque and the angular
displacement were calculated from the phase and amplitude parameters of
the sinusoids fitted to the recorded signals.

Two samples from Etna were collected from lava erupted in 1992. One
of these samples was taken from the top surface, the other one from the
base (∼10cm down from the surface), and thus they represent samples with
different cooling regimes. The surface sample has smaller vesicles (∼ 0.2 to
0.5 mm, 15 to 20 vol. %) and smaller crystal content (∼20 to 30 vol. %)
than the basal sample (∼20 vol. % of 1 to 2 mm vesicles and ∼30 vol. %
phenocrysts). No chemical composition of the samples was given either by
the study itself, or by precedent studies. A further sample was collected
from near the south east cone in 1999, from the least vesicular area found
in a recently emplaced flow near hornito H3 (Calvari and Pinkerton, 2002)
at the top of the active flow field. The sample was used to study mainly
the crack-healing-related phenomena. The Etna 1999 sample data were not
included in the dataset made available to us by the authors.

The Hawai’ian basalt was sampled in the east rift eruption zone of Ki-
lauea from a lava flow from a pahoehoe toe in September, 1984 (eruption
temperature ∼1147 ◦C). This pahoehoe lava flow corresponds to the episode
25 of the eruption Pu’u ’O’o of Kilauea Volcano. Its chemical composition
has been presented in Garcia et al. (1992) and Bagdassarov (2000). The
vesicularity varies around 50 vol. %. The sample has ∼10 vol. % of olivine
quenched from magma during sampling and a few percent of other phe-
nocrysts.

The Vesuvius samples were collected from the 1834 flow at Cava Ranieri
approximately 6.3 km ESE of the central cone of Vesuvius by the group from
University College of London. Chemical analysis of the samples is given in
Belkin et al. (1993). The same sample was also used by Rocchi et al. (2004)
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in experiments to determine Young’s modulus and tensile strength.
The most important findings of James et al. (2004) with respect to our

study are the temporal variations in complex shear modulus and internal
friction at ∼800 ◦C. They suggest that, over durations of up to 120 hours,
structural adjustments were occurring within some of the samples. This
time-varying behaviour of lava samples is attributed to the slow closing
(healing) of microcracks resulting in the apparent stiffening of lava samples
under annealing. Thus, those parts of lava flows that underwent slow cool-
ing have more elastic properties. Regions which cool faster possess smaller
shear moduli and higher internal friction due to thermal microcracking.

Since the publication of James et al. (2004), several other studies on
rheological properties of lavas and other geomaterials were performed using
the methods of mechanical spectroscopy (bending and torsional tests). We
shall list here the ones addressing the factors that influence viscoelasticity at
various time scales, temperatures and pressures: Wagner (2004), Fontaine
et al. (2005), Fontaine et al. (2008), Okumura et al. (2010), Takei et al.
(2011), McCarthy et al. (2011), Chien (2014) and Okumura et al. (2016).
Some of them could serve as a source of data for potential future viscoelastic
consistency tests.

2. Consistency of viscoelastic storage and loss shear modulus

according to Kramers–Kronig relationships

A causal and time-invariant linear system shall have a complex frequency
response (FR) whose real and imaginary parts are consistent, i.e. complying
with Kramers–Kronig relationships. Let us test whether the linear viscoelas-
tic shear modulus represented by the generalized Maxwell body fits into this
category.

The shear stress response τ (t) of the linear viscoelastic shear modulus
of the generalized Maxwell body with finite number of Maxwell modes to
the unit step in engineering shear strain:

γ (t) = γ θ(t) , (1)

where γ is a constant and
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θ(t) =

{

0 for t < 0

1 for t ≥ 0
,

is

τ(t) =















0 for t < 0

γ
N
∑

n=0

gn exp (−t/τn) for t ≥ 0
. (2)

The Laplace transform of (1) and (2) yields γ(s) = γ/s and τ(s) =

γ
N
∑

n=0

gnτn
1 + sτn

, respectively. The shear modulus of the generalized Maxwell

model then reads:

G(s) =
τ (s)

γ (s)
= γ

N
∑

n=0

gnτn
1 + sτn

/

(γ/s) =
N
∑

n=0

gnτn s

1 + sτn
. (3)

For a viscoelastic solid, one of relaxation times τn is infinite. Let us choose
τ0 → ∞. Then:

G(s) = g0 +
N
∑

n=1

gnτn s

1 + sτn
. (4)

The substitution of s = jω yields the complex shear modulus:

G(jω) = g0 +
N
∑

n=1

gnτ
2
n ω

2 + jgnτnω

1 + τ2nω
2

(5)

denoted also as G∗(ω). The relaxed modulus GR and unrelaxed modulus
GU are:

GR = lim
ω→0

G(jω) = g0 , GU = lim
ω→∞

G(jω) =
N
∑

n=0

gn = GR +
N
∑

n=1

gn . (6)

The real part of (5) is the storage modulus:

G′(ω) = g0 +
N
∑

n=1

gnτ
2
n ω

2

1 + τ2nω
2
, (7)
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the imaginary part is the loss modulus:

G′′(ω) =
N
∑

n=1

gnτnω

1 + τ2nω
2
. (8)

Let us verify that the storage (7) and loss modulus (8) satisfy the Kramers–
Kronig relationships (Kronig, 1926; Kramers, 1927):

G′(ω) = lim
ω→∞

G′(ω)− 2

π
PV

∞
∫

0

ω′G′′(ω′)− ωG′′(ω)

ω′2 − ω2
dω′ , (9)

G′′(ω) =
2ω

π
PV

∞
∫

0

G′(ω′)−G′(ω)

ω′2 − ω2
dω′ , (10)

where PV denotes the Cauchy principal value of the integral.
Before we substitute (7) and (8) to (9) and (10), let us note that:

PV

∞
∫

0

dω′

ω′2 − ω2
= lim

ε→0+





ω−ε
∫

0

dω′

ω′2 − ω2
+

∞
∫

ω+ε

dω′

ω′2 − ω2



 =

= lim
ε→0+

(

−arctanh((ω − ε)/ω)

ω
+

arctanh(ω/(ω + ε))

ω

)

= 0 .

(11)

This means that in (9) and (10), any integrand with a constant numerator
integrates to zero. The presence of the “null” terms (cf. e.g. Rusu et al.,

2005) −ωG′′(ω)

ω′2 − ω2
and − G′(ω)

ω′2 − ω2
in (9) and (10), respectively, is a trick

aimed at cancelling the singular term ω ′2 − ω2 in the denominator of the
integrand for suitably shaped G′(ω) and G′′(ω), thus turning the integral
from a singular into a non-singular one, as we shall see in the sequel.

The substitution of (7) and (8) to (9) yields:

G′(ω) = g0 + lim
ω→∞

N
∑

n=1

gnτ
2
n ω

2

1 + τ2nω
2
− 2

π

N
∑

n=1

∞
∫

0

gnτn
1 + τ2nω

′2
dω′ =

= g0 +
N
∑

n=1

gn − 2

π

N
∑

n=1

π gn
2 (1 + τ2nω

2)
= g0 +

N
∑

n=1

gnτ
2
n ω

2

1 + τ2nω
2
,

(12)
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Bednárik M., Kohút I.: Relaxation time spectra of basaltic lavas . . . (109–132)

which is the same as (7). Similarly, the substitution of (7) to (10) yields
(omitting the term g0 in (7) which integrates to 0 according to (11)):

G′′(ω) =
2ω

π

N
∑

n=1

∞
∫

0

gnτ
2
n

1 + τ2nω
′2
dω′ =

2ω

π

N
∑

n=1

π gnτn
2 (1 + τ2nω

2)
=

N
∑

n=1

gnτnω

1 + τ2nω
2
, (13)

which is the same as (8).
Thus, according to the Kramers–Kronig relationships, the storage and

loss modulus of a viscoelastic solid with a finite number of Maxwell modes
uniquely determine each other.

For τn > 0, G(s) is a minimum-phase function and lnG(s) is analytic for
Re(s) > 0. Then the logarithm of the magnitude α(ω) = ln |G∗(ω)| and the
phase ϕ(ω) in lnG∗(ω) = α(ω) + jϕ(ω) form also a unique pair of functions
(except for a constant term in α(ω)) coupled for instance by Bayard–Bode
relationships (Bode, 1945):

ϕ(ω) =
1

π

∞
∫

−∞

dα(u)

du
ln coth

| u |
2

du (14)

and

α(ω) = lim
ω→0

α(ω)− 1

π

∞
∫

−∞

d (ϕ(u)/exp(u))

du
ln coth

|u |
2

du (15)

or

α(ω) = lim
ω→∞

α(ω)− 1

π

∞
∫

−∞

d (ϕ(u) exp(u))

du
ln coth

| u |
2

du , (16)

where u = ln (ω′/ω).
The reader can try to apply the formulae (14), (15) and (16) to α(ω) and

ϕ(ω) of a viscoelastic model with finite number of Maxwell modes only to
discover that they fail to yield closed symbolic forms of the integrals. If we
are not interested in asymptotic estimates, but in exact general transforma-
tions between α(ω) and ϕ(ω) of a generalized Maxwell model with discrete
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modes, the Bayard–Bode formulae are practically useless. In the next sec-
tion, we shall offer alternative formulae practically applicable to generalized
Maxwell body with both discrete and continuous relaxation spectrum and
suitable for testing the consistency of α(ω) and ϕ(ω).

3. Methods

3.1. Relaxation time spectra as consistency test tools

The formulae (7) and (8) could be used to extract the discrete spectra gn,
n ∈ {0, 1, . . . , N} for each of the sampled functions G′(ω), G′′(ω) separately.
The respective discrete spectra g′n and g′′n could then be compared to as-
sess the inconsistency of G′(ω) and G′′(ω). The difficulty with the discrete
spectra is the arbitrariness of both input sampling of G′(ω) and G′′(ω) in
frequency domain and output sampling of g ′n(τn) and g′′n(τn) in the domain
of relaxation times, resulting in non-uniqueness and non-representativeness
of the latter. Moreover, the formulae (7) and (8) do not have a form suit-
able for an effective numerical implementation of the inversion process, with
a high potential of its failure.

We shall present a solution of this problem based on widely used continu-
ous logarithmic relaxation spectra, comprehensively presented e.g. in Ferry
(1980). The shear stress response of a viscoelastic solid with continuous
relaxation spectrum H(ln τ) to unit step (1) is:

τ(t) =



















0 for t < 0

γ



g0 θ(t) +

∞
∫

−∞

H(ln τ) exp (−t/τ) d(ln τ)



 for t ≥ 0
. (17)

After performing the Laplace transform, the shear modulus in the s-
domain is:

G(s) = g0 +

∞
∫

−∞

s τ H(ln τ)

1 + s τ
d(ln τ) (18)

and the storage and loss modulus are:
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G′(ω) = g0 +

∞
∫

−∞

ω2 τ2 H(ln τ)

1 + ω2τ2
d(ln τ) , (19)

G′′(ω) =

∞
∫

−∞

ω τ H(ln τ)

1 + ω2τ2
d(ln τ) . (20)

Now it is natural to introduce the logarithmic frequency and relaxation
time variables Ω, Θ (T cannot be used because it shall denote temperature).
The substitution of τ = exp(Θ) and ω = exp(Ω) yields:

G′(Ω) = g0 +

∞
∫

−∞

exp(2Ω + 2Θ)H(Θ)

1 + exp(2Ω + 2Θ)
dΘ , (21)

G′′(Ω) =

∞
∫

−∞

exp(Ω + Θ)H(Θ)

1 + exp(2Ω + 2Θ)
dΘ . (22)

The kernel of the integral in (22):

K ′′(Ω,Θ) =
exp(Ω +Θ)

1 + exp(2Ω + 2Θ)
(23)

is, for a fixed Θ, a bell-shaped function of Ω. The bell has its maximum at
ΩC = −Θ and is exactly symmetric with respect to ΩC . This bell shape
is of utmost importance for the numerical implementation of the G′′(Ω) to
H(Θ) inversion. On the other hand, the kernel of the integral in (21)

K ′(Ω,Θ) =
exp(2Ω + 2Θ)

1 + exp(2Ω + 2Θ)
(24)

has an unpleasant form of a smoothened ramp growing from 0 to 1 as Ω
goes from −∞ to ∞.

The desired bell-shaped kernel appears in:

dG′(Ω)

dΩ
=

∞
∫

−∞

d

dΩ

(

exp(2Ω + 2Θ)

1 + exp(2Ω + 2Θ)

)

H(Θ)dΘ =

=

∞
∫

−∞

2 exp(2Ω + 2Θ)

(1 + exp(2Ω + 2Θ))2
H(Θ)dΘ .

(25)
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In this case, the kernel

dK ′(Ω,Θ)

dΩ
=

2 exp(2Ω + 2Θ)

(1 + exp(2Ω + 2Θ))2
(26)

forms a bell centred at ΩC = −Θ and exactly symmetric with respect to
ΩC . Compared to (23), the bell (26) is narrower.

The main idea of the G′′(Ω) to H(Θ) and
dG′(Ω)

dΩ
to H(Θ) inversion is

based on the fact that due to the bell shape of the respective kernel, the

value H(Θ) influences the functions G′′(Ω),
dG′(Ω)

dΩ
mainly at Ω = −Θ. The

details will be provided in the section 3.2.
The experimental data from the harmonic measurements of the viscoelas-

tic (shear) modulus are very often supplied in the form of samples of the
magnitude of the complex modulus |G∗(ω)| and of the loss angle ϕ(ω). Both
these datasets are likely to be contaminated by measurement errors char-
acteristic to each of them. Computing G′(ω), G′′(ω) out of |G∗(ω)|, ϕ(ω)
would produce an undesirable mixture of errors of |G∗(ω)| and ϕ(ω). An
ideal approach to |G∗(ω)|, ϕ(ω) is therefore their totally separate process-
ing. We have realized that the Bayard–Bode relationships do not provide
a reasonable option for the direct test of consistency of |G∗(ω)|, ϕ(ω). We
shall show that there is a viable alternative approach very similar to the use
of relaxation time spectrum H(Θ) in (22) and (25).

Just for the purpose of a short derivation within this paragraph, let us
consider the complex viscoelastic modulus G∗

01(ω) containing only the 0-th
and the 1-st Maxwell mode. To avoid a variable confusion in the sequel, let
us change g0, g1 to k0, k1 in advance. Then the modulus reads:

G∗
01(ω) = k0 +

ω2τ2k1 + jωτ1k1
1 + τ12ω2

. (27)

The tangent of its phase tanϕ01(ω), where

ϕ01(ω) = arctan
ωτ1k1/k0

1 + ω2τ21 (1 + (k1/k0))
, (28)

has the same structure as the rational function
gnτnω

1 + τ2nω
2
– the summand of

(8). Let us introduce p1 = k1/k0 and compare the rational functions in (8)
and (28) term by term: gnτn = p1τ1, τ

2
n = τ21 (1 + p1). Then
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p1 =

(

g2n + gn

√

4 + g2n

)/

2 (29)

and

τ1 = τn

/

√

(1 + p1) (30)

transform (28) to

ϕn(ω) = arctan
gnτnω

1 + τ2nω
2
, (31)

which can be summed to the total phase

ϕ(ω) =
N
∑

n=1

arctan
gnτnω

1 + τ2nω
2
. (32)

Here, unlike in (8), gn is dimensionless. Analogically to the transition
from discrete (8) to continuous (20) representation, we can introduce a di-
mensionless relaxation time spectrum h(Θ) and write:

ϕ(Ω) =

∞
∫

−∞

arctan
exp(Ω +Θ)h(Θ)

1 + exp(2Ω + 2Θ)
dΘ . (33)

We have to substitute (29) and (30) also to G∗
01(ω) in (27), denote |G∗

n(ω)|
= |G∗

01(jω)| and express it in terms of k0, gn and τn:

|G∗
n(ω)| = k0

√

1 +
g2n
2

+
gn
2

√

4 + g2n exp

(

arctanh
gn tanh(lnωτn)

√

4 + g2n

)

. (34)

Alternatively, after the substitution of

p2 = k1

/

(k0 + k1) =

(

−g2n + gn

√

4 + g2n

)/

2 , (35)

τ1 = τn

/

√

(1− p2) , (36)

118



Contributions to Geophysics and Geodesy Vol. 49/2, 2019 (109–132)

|G∗
n(ω)| = (k0 + k1)

√

1 +
g2n
2

− gn
2

√

4 + g2n ×

× exp

(

arctanh
gn tanh(lnωτn)

√

4 + g2n

)

.

(37)

Then the total magnitude of the shear modulus corresponding to the
total phase ϕ(ω) (32) is:

|G∗(ω)| = GR

N
∏

n=1

√

1 +
g2n
2

+
gn
2

√

4 + g2n×

× exp

(

arctanh
gn tanh(lnωτn)

√

4 + g2n

)

.

(38)

or

|G∗(ω)| = GU

N
∏

n=1

√

1 +
g2n
2

− gn
2

√

4 + g2n ×

× exp

(

arctanh
gn tanh(lnωτn)

√

4 + g2n

)

.

(39)

In the case of continuous relaxation spectrum h(Θ) as in (33) (in the
sequel, denoted as h for brevity), the integral forms corresponding to the
latter two expressions are:

ln |G∗(Ω)| = lnGR +
1

2

∞
∫

−∞

ln

(

1 +
h2

2
+

h

2

√

4 + h2

)

dΘ+

+

∞
∫

−∞

arctanh
h tanh(Ω + Θ)√

4 + h2
dΘ ,

(40)

ln |G∗(Ω)| = lnGU +
1

2

∞
∫

−∞

ln

(

1 +
h2

2
− h

2

√

4 + h2

)

dΘ+

+

∞
∫

−∞

arctanh
h tanh(Ω + Θ)√

4 + h2
dΘ .

(41)
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Similarly to the kernel K ′(Ω,Θ) in (24), also the integrand

K(Ω,Θ) = arctanh
h tanh(Ω + Θ)√

4 + h2
(42)

is a smooth ramp-like function of Ω. Therefore, for the purpose of |G∗(ω)|
to h(Θ) inversion, we have to use the formula:

d ln |G∗(Ω)|
dΩ

=

∞
∫

−∞

dK(Ω,Θ)

dΩ
dΘ =

∞
∫

−∞

h
√
4 + h2

2 + h2 + 2 cosh 2(Ω + Θ)
dΘ . (43)

The integrand dK(Ω,Θ)/dΩ is a symmetric bell-shaped function of Ω
centred at −Θ. Once h(Θ) is known, it can be supplied back to (40) and
(41) to yield GR and GU , respectively. The first terms in (40) and (41) are
analogical to (9) in Kramers–Kronig or (15) and (16) in Bayard–Bode rela-
tionships, since GR = lim

ω→0
|G∗(ω)|, GU = lim

ω→∞
|G∗(ω)| (cf. (6)). Note that

GR and GU can be evaluated at any Ω. Their constancy over the frequency
range indicates the quality of the inversion.

The quantity h(Θ) does not meet all usual expectations of a spectrum.
The integral transformations (33) and (43) are (unlike (22)) non-separable

into the classical spectral form
∞
∫

−∞
k(Ω,Θ)h(Θ)dΘ and nonlinear in h(Θ).

For our numerical implementation of the h(Θ) search, this is not a problem,
as far as rough proportionality (the greater h(Θ), the greater ϕ(−Θ)) is
preserved. The phase ϕ(Ω) and the spectrum h(Θ) have roughly the same
order of magnitude (cf. 52). For crustal rocks then ϕ(Ω) → 0, h(Θ) → 0.
The reader can expand the functions used in the expressions (33) and (43)
in Taylor series to see that for h(Θ) → 0 they converge to the usual integral

transformation
∞
∫

−∞
k(Ω,Θ)h(Θ)dΘ.

In experimental practice, the formulae (22) and (25) give different H(Θ)
spectra and the formulae (43) and (33) give different h(Θ) spectra. There-
fore, we will speak of G′(ω)-, G′′(ω)-, |G∗(ω)|- and ϕ(ω)-borne relaxation
spectra and denote them accordingly: H ′(Θ), H ′′(Θ), h|G∗|(Θ) and hϕ(Θ).
The method of Winter (1997), giving a single discrete parsimonious spec-
trum for jointly inverted G′(ω), G′′(ω) would be the less successful, the less
G′(ω) and G′′(ω) comply with Kramers–Kronig relationships.
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With the introduction of the unscaled relaxation time spectrum h(Θ),
we filled the grey field in the table of inversion schemes for viscoelastic
consistency tests (Table 1).

Table 1. Inversion methods for viscoelastic consistency tests.

The measured and Kramers–Kronig inverted moduli G′(ω), G′′(ω) are
not as suitable consistency test tools as the relaxation time spectra H(Θ)
or h(Θ) because of the ambiguity, which of G′(ω), G′′(ω) shall be preferred
as the comparison basis.

3.2. Numerical implementation of the consistency test based on

the relaxation spectra

The numerical implementation of the spectral consistency test can be di-
vided into three parts: data pre-processing, their inversion to spectra and
the post-processing of spectra to retrieve additional characteristics (GR, GU ,
misfits of the spectra etc.). All the stages are implemented in a script in
the computational environment Mathematica R© by Wolfram Research.

We shall first describe the inversion itself, because it poses require-
ments to the input data to be met in the pre-processing stage. As an
example, let us explain the inversion of G′′(Ω) to H(Θ). The integral

G′′(Ω) =

∞
∫

−∞

exp(Ω + Θ)H(Θ)

1 + exp(2Ω + 2Θ)
dΘ (22) shall first be discretized. The in-

finitesimal integration step dΘ shall be approximated by constant finite
step ∆Θ and the infinite integration range shall be approximated by fi-
nite range 〈Θmin, Θmax〉 such that 〈−Ωmax, −Ωmin〉 ⊂ 〈Θmin, Θmax〉, where
〈Ωmin, Ωmax〉 is the frequency range of the G′′(Ω) data. Typically, Θmin ≈
−2Ωmax, Θmax ≈ −2Ωmin. The original G

′′(Ω) must be extrapolated to the
range Ω ∈ 〈−Θmax, −Θmin〉.

The inversion shall be iterative according to the cyclic scheme:
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G′′
i(Ω) =

N
∑

n=1

exp(Ω + Θn)Hi−1(Θn)

1 + exp(2Ω + 2Θn)
∆Θ , (44)

ci(Θn) = G′′(−Θn)
/

G′′
i(−Θn) , (45)

Hi(Θn) = ci(Θn)Hi−1(Θn) , (46)

where i denotes the iteration number starting with i = 1. The H0(Θn) = 1
for all n can be used as start model. The ratio (45) of the original (inter-
or extrapolated) data to their i-th synthetic approximation (44) gives the
correction coefficients ci(Θn) that will improve the estimate of Hi(Θn) (46).
In (44), Mathematica allows us to use symbolic, continuous representation
of G′′

i(Ω).
With G′′(Ω) ≥ 0 and H0(Θn) > 0, the repetition of (44÷46) can never

arrive at Hi(Θn) < 0. The correction coefficients themselves provide a suit-
able convergence criterion, as:

lim
i→∞

ci(Θn) =











1 for G′′(−Θn) > 0

0 for G′′(−Θn) = 0
. (47)

At ci(Θn) approaching to either 1 or 0 for all n, the best possible approx-
imation of G′′

i(Ω) to G′′(Ω) and Hi(Θn) to H(Θn) will be achieved within
the bounds of the discretization and integration range truncation errors.

The convergence can be accelerated by a correction predictor more coura-
geous than (45):

ci(Θn) =
(

G′′(−Θn)
/

G′′
i(−Θn)

)β
, (48)

where β ∈ 〈1, 2) . As β approaches 2, the more uneven (oscillatory) the
convergence is. At β = 2, the process diverges.

The schemes of inversion of other FRs to their respective time relaxation
spectra are analogical to (44÷46).

The preprocessing should supply easily invertible data. We have to assure

that G′′(Ω) ≥ 0,
dG′(Ω)

dΩ
≥ 0, ϕ(Ω) ≥ 0,

d ln |G∗(Ω)|
dΩ

≥ 0. It is usually

not a problem with the first and third quantity in the list, but in G′(Ω),
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ln |G∗(Ω)| it often happens that on a part of their frequency range, they

decrease with frequency. There, the negative values of
dG′(Ω)

dΩ
,
d ln |G∗(Ω)|

dΩ
shall be replaced by 0.

The truncation of the integration range is based on the assumptions
lim

Θ→−∞
H(Θ) = 0, lim

Θ→∞
H(Θ) = 0, lim

Θ→−∞
h(Θ) = 0, lim

Θ→∞
h(Θ) = 0. If we

want H(Θ), h(Θ) to go to zero already at Θmin, Θmax, we have to make

sure that G′′(Ω),
dG′(Ω)

dΩ
, ϕ(Ω),

d ln |G∗(Ω)|
dΩ

also go to zero at Ω = −Θmax,

Ω = −Θmin. If it is not the case with the original (extrapolated) data, we
have to apply band-pass filtering. A very abrupt transition from nonzero
to (almost) zero values is not desirable, as it produces truncation artefacts
in the relaxation spectrum. The filter must therefore offer a good trade-off
between suppression in the stopband and smoothness around the cut-off
frequencies.

We have very good experiences with the band-pass filter of the type:

F (Ω− Ω0) =



1 +

√

(

Ω− Ω0

Ωthr

)2n




−1

, (49)

where Ω0 is the central frequency of the passband and Ωthr is the cut-off
frequency. F (Ω− Ω0) is an even function of Ω− Ω0 even for an odd n, thus
widening the set of candidates for its optimum order.

The lower are n and Ωthr, the more the filter influences the data in the
middle of the passband. As a consequence, the relaxation spectrum of the
filtered FR may considerably differ from that of the original FR even in the
passband. To minimize this effect, the original FR should be pre-deformed
with the reciprocal band-stop filter and only then fitted by a polynomial of
a suitably low order.

Let us denote the original data generally as D(Ω− Ω0). We have to
produce the pre-deformed data:

DBS(Ω− Ω0) = D(Ω− Ω0)
/

F (Ω− Ω0) , (50)

and fit it by the polynomial P (Ω−Ω0).
Then the optimal continuous representation of the original data within

the passband of the filter is:
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DBP (Ω− Ω0) = P (Ω− Ω0)F (Ω− Ω0) . (51)

In the passband, the band-stop filter implicitly present in the pre-deformed
data (50) cancels with the explicitly present band-pass filter in (51). In the
stopbands, the band-pass filter prevails and suppresses the original FR. The
main idea is very similar to that of pre-emphasis – de-emphasis signal pro-
cessing.

When filtering ln |G∗(Ω)|, G′(Ω) or
∫

ϕ(Ω),
∫

G′′(Ω), the order of the fit-
ting polynomial P (Ω − Ω0) shall be equal to that of the filter (49). The
desired band-pass filtering effect becomes obvious after the differentiation
of the former quantities. In the stopbands, the values of derivatives will be
negative and replaced by zero. If we accept a non-ideal stopband suppres-
sion, it is possible to fit ϕ(Ω) and G′′(Ω) directly as well. The polynomials
that fit them must then be of a lower order than the filter (49).

The lower n, the smoothest the transition from non-zero to zero values
is and the smaller the cut-off artefacts in the corresponding spectra are.

Applying the same kind of filtering (51) to both sides of the couple sub-
ject to Kramers–Kronig relationships introduces their violation. This viola-
tion is however relevant only to the stopbands, where we do not expect to
have any useful data.

A cleaner trick to suppress the stopbands is to subtract from the filtered
FR a constant, whose equivalent in terms of constant ∆H or ∆h we shall re-
turn to H(Θ) or h(Θ), respectively, at the very end. For instance, according
to:

∆G′′ =

∞
∫

−∞

exp(Ω + Θ)∆H

1 + exp(2Ω + 2Θ)
dΘ =

π

2
∆H , (52)

a constant ∆G′′ subtracted from G′′(Ω) shall be compensated by a constant
∆H = 2∆G′′/π added to H(Θ). The negative values of thus lowered G′′(Ω)
are replaced by 0. This operation does not introduce any inconsistency
with Kramers–Kronig relationships and is physically justified: a nonzero
constant extrapolation of H(Θ) or h(Θ) to the zones not covered by data
may be a more realistic estimate than their zero extrapolation. If we apply
the same procedure to the linearized version of (33), we get ∆h = 2∆ϕ/π.
Similarly, we obtain also ∆H = ∆(dG′/dΩ), ∆h = ∆(d ln |G∗(Ω)|/dΩ).
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One of the roles of the post-processing is to provide an independent check
of the iteration outcome. Once H(Θ) is known, from (21) we yield GR = g0,
which shall be constant over 〈Ωmin,Ωmax〉. For this purpose GU can be used,
as well. Its calculation requires GR, though:

GU = lim
Ω→∞

G′(Ω) = GR +

∞
∫

−∞

H(Θ) dΘ . (53)

Once h(Θ) is known, the formulae (40) and (41) can be used to obtain
GR and GU , respectively. GR and GU and can be used as indicators of the
consistency, as well. For this purpose, the spectra couples shall be obtained
by compatible procedures, resulting in their nearly equal range of non-zero
values.

An important part of the post-processing is the presentation of the re-
sults. The ratios H ′(Θ)/H ′′(Θ) and h|G∗|(Θ)/hϕ(Θ) or their reciprocals are
particularly suitable for the inconsistency assessment provided the division
by zero is avoided either by the subtract-return pre-processing or some other
suitable means.

4. Results

The h|G∗|(Θ)/hϕ(Θ) ratios of the samples Etna 1992 top, Etna 1992 base,
Hawai’i and Vesuvius are presented in Fig. 1 to 4. They are almost identi-
cal with the respective H ′(Θ)/H ′′(Θ) ratios. Therefore, the latter will not
be presented here. The feature common to all samples is the convergence
of h|G∗|(Θ)/hϕ(Θ) to 1 (ideal linear viscoelasticity) with the temperature
increasing to the melting point.

At 500–600 ◦C, the scatter of the measured FRs allows for a large ar-
bitrariness of their fits. Thus, the evidence for the convergence to ideal
linear anelasticity with the temperature decrease is rather weak, but still
visible in the case of Etna 1992 top. The biggest surprise is the very large
h|G∗|(Θ)/hϕ(Θ) ratio (almost 20) of the Etna 1992 top sample at 786 ◦C.
The measured |G∗(ω)|, ϕ(ω) at 786 ◦C are very smooth and raise no doubts
about their reliability. The batman-shaped transitions in h|G∗|(Θ)/hϕ(Θ)
are due to the band-pass filtering of ln |G∗(Ω)| and narrow kernel in (43).
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Fig. 1. Linear viscoelastic consistency of the Etna 1992 top sample.

Fig. 2. Linear viscoelastic consistency of the Etna 1992 base sample.

The effects of ϕ(Ω) filtering on hϕ(Θ) are broader transitions without ring-
ing, because the kernel in (33) is broader than in (43). Still, the filtering
artefact is rather local and does not contaminate the whole spectrum. For
the purpose of independent spectrum retrieval by the reader, we attached
the source data of the Etna 1992 top sample in the Appendix (Table 2).

Similar, but not that pronounced inconsistencies can be seen in the sam-
ples Etna 1992 base (h|G∗|(Θ)/hϕ(Θ) → 4 already at 616 ◦C) and Hawai’i
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Fig. 3. Linear viscoelastic consistency of the Hawai’i sample.

Fig. 4. Linear viscoelastic consistency of the Vesuvius sample.

(h|G∗|(Θ)/hϕ(Θ) → 3 at 760 ◦C and 870 ◦C). In the case of Vesuvius, the
peak h|G∗|(∼ 4 s)/hϕ(∼ 4 s) → 4 at 832.8 ◦C (Fig. 4) is an artefact due to
a sudden drop of hϕ(Θ) to the ∆hϕ baseline, while h|G∗|(Θ) continues its
smooth run.

While the transition of the samples Etna 1992 and Vesuvius to the
full consistency comes rather suddenly above ∼ 900 ◦C, the Hawai’i sam-
ple shows a more smooth decrease to h|G∗|(Θ)/hϕ(Θ) = 1. The curiosity of
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the Hawai’i dataset at 553 ◦C is |G∗(ω)| decreasing with frequency almost on
the whole range of ω. Such behaviour is totally incompatible with the gener-
alized Maxwell model. Therefore, we have a flat zero line of h|G∗|(Θ)/hϕ(Θ)
at 553 ◦C in Fig. 3. At lower temperatures, the decrease of |G∗(ω)| happens
occasionally also in other samples and causes h|G∗|(Θ)/hϕ(Θ) to drop to
zero. In Fig. 3 we also see the gradual retreat of the curves from lower fre-
quencies with increasing temperature. This is due to an experimental fact
mentioned by James et al. (2004) – at lower frequencies, the sample started
to flow.

The best consistency is shown by the Vesuvius sample, owing also to the
fact that the measurements start there only as high as at 832.8 ◦C.

5. Discussion

The unexpected discovery of viscoelastic inconsistency as large as 20 in terms
of h|G∗|(Θ)/hϕ(Θ) ratio in Etna 1992 top sample demonstrates the impor-
tance of prompt consistency screening of any data deemed to be generated
by a linear system. An early discovery by the authors themselves would
have incited a thorough search for a possible error. With the error ruled
out, one could concentrate on physics behind that strange behaviour. Now
we are left with measurements of a single sample at a single temperature
786 ◦C with neighbours as much as 200 ◦C afar. The measurement with the
original sample is unrepeatable, because in the course of being heated up to
1100 ◦C, the sample was completely annealed and lost its original material
structure. Our experience with the rest of the dataset prepared by the au-
thors who are specialists in this kind of measurements makes the probability
of a huge error quite low and the matter is thus worth discussing it further.

The chemical and crystalline composition, although not stated, is roughly
the same as in Etna 1992 base sample. The latter does not show any excep-
tional behaviour at 781 ◦C (Fig. 2). Thus, a sudden crystal phase change
cannot be blamed for the inconsistency. The authors of the original study
identified the mechanism of crack healing as a possible cause of quality factor
and shear modulus increase during the annealing. Due to the more intensive
cooling of the surface of the lava flow, the Etna 1992 top sample exhibited
more thermally-induced microcracking than Etna 1992 base. It is possible

128



Contributions to Geophysics and Geodesy Vol. 49/2, 2019 (109–132)

that at 786 ◦C, the measurements are covering a non-equilibrium state in the
middle of the crack healing process: the transformation of cracks into ellip-
tical/spherical pores already decreased the loss angle, but the migration of
volatiles out of the material and the decrease of the pore volume leading to
shear factor increase is still in progress or waiting for higher temperatures.
The high frequency torsions might propel the migration of volatiles more
intensively than the low frequencies. Such extra stiffening with increas-
ing frequency can add to the classical linear stiffening effect and increase
h|G∗|(Θ).

An alternative explanation is that even in an equilibrium multicompo-
nent/multiphase system, especially at the possible onset of an additional
relaxation mechanism (diffusion creep), one component can prevailingly in-
fluence the loss factor, the other the magnitude of the shear modulus. There
can also be complicated nonlinear interactions between the components.

6. Conclusions

The main achievements of our current work are:

a) The introduction of |G∗(ω)|-borne and ϕ(ω)-borne relaxation time spec-
tra, h|G∗|(Θ) and hϕ(Θ), makes a totally separate treatment of the orig-
inal |G∗(ω)|, ϕ(ω) datastreams possible. The naturally unscaled spectra
h|G∗|(Θ), hϕ(Θ) are very well suited for comparing the attenuation of ma-
terials with very different scales of viscoelastic moduli. As an alternative
to h|G∗|(Θ)/hϕ(Θ), the ratio H ′(Θ)/H ′′(Θ) can be used as viscoelastic
consistency indicator and yields very similar results. The only serious
methodological disadvantage of the latter approach is the mixing of the
original |G∗(ω)|, ϕ(ω) frequency responses and their errors.

b) Our method of iterative inversion of the frequency responses to relaxation
time spectra is very stable, provided that the FRs are suitably pre-
filtered. The quality of the inversion can be checked by the calculation
of the relaxed or unrelaxed shear modulus GR, GU . Ideally, they should
be independent of Ω.

c) With temperature increase from 500 ◦C to 1100 ◦C, the viscoelastic con-
sistency of all examined lava samples improves to the ideal linear vis-
coelasticity. Nevertheless, each sample has a specific fingerprint. In the
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Etna 1992 samples, there is a not very convincing evidence for fairly
good consistency at ∼500 ◦C, then there is a loss of consistency between
∼600 ◦C and ∼800 ◦C, especially dramatic in Etna 1992 top sample at
786 ◦C, where h|G∗|(Θ)/hϕ(Θ) approaches 20. This inconsistency level
remains a mystery and a very strong motivation for a further search for
extreme inconsistencies. If zones with that high inconsistency really oc-
cur within the lithosphere, then there could be a chance to detect them
by seismic tomography.
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Appendix

Table 2. The frequency responses of the magnitude of shear modulus and the loss angle
for the Etna 1992 top sample at 786 ◦C (James et al., 2004).

f [Hz] |G∗∗| [GPa] loss angle [rad]

0.002 7.8984 0.029311

0.005 8.6888 0.02522

0.01 9.6538 0.023243

0.02 10.968 0.019216

0.05 11.665 0.016594

0.1 12.721 0.013335

0.2 15.352 0.0120599

0.5 17.345 0.01170799

1 18.169 0.0102132

2 19.268 0.0088959

5 20.627 0.0064447

10 21.312 0.0046908

20 21.669 0.0039605
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