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Abstract: A systematic parameter study of rotating convection in non-uniformly strati-
fied spherical shells in dependence on the Prandtl number, Ekman number and Rayleigh
number is presented. Attention is focused on the case, in which the thickness of both
sublayers (stable and unstable) is the same (which was not investigated before). In our
case the convection is not suppressed in the stably stratified region but, it is developed in
both sublayers. Cases of small and large Prandtl numbers are characterized by the cre-
ation of multilayer convective structures. Convective motions take place simultaneously
in the stable and unstable layers and form a multilayer structure. On the other hand, it
is not possible to observe any multilayer convection for Prandtl number equal to one but
it is possible to observe the small-scale structures. A conclusion is that our case is similar
to the case in which the thickness of unstable sublayer is greater than that of stable one.
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1. Introduction

The Earth’s and planetary fluid interiors are characterized by convective mo-
tions. Convection (magnetoconvection) constitutes the driving mechanism
of hydromagnetic processes leading to magnetic field generation (Roberts
and Glatzmaier, 2000). Buoyancy, the fundamental source of convection
(magnetoconvection) (Jones, 2000), results from the complicated processes
taking place in the Earth’s and planetary fluid interiors, for example, a
chemical homogenisation, gravitational differentiation, solidification pro-
cesses acting on the inner core boundary (e.g., the convection in the mushy
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layer due to the mentioned solidification processes, see Guba and Woster
(2006), etc. Consequently, the outer liquid Earth’s core and the liquid in-
teriors of Giant planets are non-uniformly stratified in density (see, Fearn
and Loper, 1981 and Zhang and Schubert, 2000).
It is assumed that the upper part of the outer liquid Earth’s core (close to

the core–mantle boundary1) is stably stratified (subadiabatic radial temper-
ature gradient) and the lower part (towards the inner core boundary2) un-
stably stratified (superadiabatic radial temperature gradient). Models of a
non-uniformly stratified fluid shell (and also horizontal layer) are an accept-
able simplification of the real Earth-like conditions. The stably stratified
sublayer in the Earth’s core is probably very thin, while the outer Earth’s
core is almost unstably stratified (see, Fearn and Loper, 1981; Zhang and
Schubert, 2000; Šimkanin et al., 2003 and Šimkanin et al., 2006). Such a
stratification is probably typical for the terrestrial planets. However, in the
other planets the ratio of the thickness of the appropriate sublayers (e.g.,
of the stably stratified to unstably stratified sublayers) and their geomet-
ric configuration vary. This is noticeable especially in the Giant planets
(Stanley and Bloxham, 2004; Stanley and Bloxham, 2006 and Zhang and
Schubert, 2000).
Non-uniform stratification can be simulated thermodynamically also in

the Boussinesq models by means of internal heat sources (Zhang and Schu-
bert, 2000; Šimkanin et al., 2003 and Šimkanin et al., 2006). If the stably
stratified sublayer is very thin (for a stable/unstable geometric configura-
tion), then the behaviour is close to the case of uniform stratification when
the whole layer is unstably stratified. Likewise, if the unstably stratified
sublayer is very thin, then the behaviour is close to the case of uniform
stratification when the whole layer is stably stratified. Thus, the effects of
non-uniform stratification are noticeable if the thicknesses of the stably and
unstably stratified sublayers are comparable Zhang and Schubert (2000),
Šimkanin et al. (2003) and Šimkanin et al. (2006), Šimkanin (2008).
The study of hydromagnetic dynamo action in Mercury provides another

good example of the influence of a stably stratified sublayer (Christensen,
2006). Mercury is characterized by a weak magnetic field. A possible expla-
nation could be given by a hydromagnetic dynamo working in the similar

1 hereinafter referred to as CMB
2 hereinafter referred to as ICB
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geometric configuration as in our study (stable/unstable), but in this case a
larger fraction of the spherical shell is stably stratified (Christensen, 2006).
In such a case the (magneto)convection and the dynamo action are strongly
suppressed in the upper stably stratified sublayer, i.e. magneto(convection)
and dynamo run in the small unstably stratified sublayer (close to ICB).
Such weak dynamo action and skin-effect (the magnetic field generated in
the unstably stratified sublayer permeates through the stably stratified sub-
layer where it is damped due to skin-effect) lead to the weak magnetic field
observed on the surface of Mercury (Christensen, 2006).
For a different geometric configuration the influence of a non-uniform

stratification is fundamental Stanley and Bloxham (2004), Stanley and Blox-
ham (2006). They assumed reverse stratification, i.e. the stably stratified
sublayer is surrounded by the unstably stratified one. This configuration
leads to non-dipolar and non-axisymmetric magnetic fields, which are typi-
cal e.g., for Uranus and Neptune.
The case, in which the thickness of both sublayers is the same, was not

investigated in previous studies (e.g. Zhang and Schubert, 2000; Šimkanin
et al., 2003; Šimkanin et al., 2006; Šimkanin, 2008). Consequently, we
placed the change of the sign to the middle of the convective shell. A sys-
tematic parameter study of a convection in rotating non-uniformly stratified
spherical fluid shells was performed. The model and governing equations
are given in Section 2. The numerical results are presented in Section 3.
Finally, Section 4 provides the conclusions.

2. Governing equations and model

Convection (with the velocity V) of incompressible fluid in the Boussinesq
approximation in a non-uniformly stratified spherical shell (ri < r < ro)
rotating with angular velocity Ω is described by the system of dimensionless
equations:

P−1r E

(
∂V
∂t
+ (V · ∇)V

)
= −∇P − 1z ×V +RaTr1r + E∇2V, (1)

∂T

∂t
+ (V · ∇)T = ∇2T +G(r), (2)

∇ ·V = 0. (3)
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The typical length scale is the radius of the outer sphere L, which makes the
dimensionless radius ro = 1; the inner core radius ri is similar to that of the
Earth, equal to 0.35. (r, θ, ϕ) is the spherical system of coordinates, 1z and
1r are the unit vectors. The typical time t is measured in the unit of L2/κ,
typical velocity V in κ/L and pressure P in ρκ2/L2. The dimensionless
parameters appearing in Eqs. (1–3) are the Prandtl number Pr = ν/κ,
the Ekman number E = ν/2ΩL2 and the modified Rayleigh number Ra =
αg0δTL/2Ωκ, where κ is thermal diffusivity, ν is the kinematic viscosity, ρ
is the density, α is the coefficient of thermal expansion, δT is the drop of
temperature through the shell and g0 is the gravity acceleration at r = ro.
Equations (1–3) are closed by the non-penetrating and no-slip boundary

conditions for the velocity field at the rigid surfaces and zero boundary
conditions for temperature perturbations T .
The last term in Eq. (2), G(r), constitutes the internal heat sources,

which enable thermodynamically simulating the various stratifications of
the spherical shells also in the Boussinesq models. The outer sphere was
assumed to be stratified non-uniformly (it is divided into stably and unstably
stratified sub-shells) with constant temperature Ti = 1 and To = 0 at the
inner and outer boundaries of the shell, respectively. Thus, the non-uniform
stratification due to internal heat sources was considered in the form:

G(r) = (9rr2i − 12r + 6r2r2i + 60r2 − 2r2i − 8 + r4i − 12rir
2 −

− 6rr3i − 18rir) / [r(r
2
i − 4)]. (4)

∂T/∂r changes its sign in the middle of the convective shell, rm = (ri +
ro)/2. Consequently, the width of both sub-shells is the same (more detailed
description of G(r), which is equivalent to the solution of Eq. (3) for the
basic state (∇2T +G(r) = 0) with Ti = 1, To = 0 and ∂T/∂r = 0 in rm, is
provided in Reshetnyak and Steffen, 2005).

3. Numerical results

Equations (1–3) were solved using the control volume method (Hejda and
Reshetnyak, 2003; Harder and Hansen, 2005). The basic strategy of the
method is to express the differential equations in conservative form, inte-
grate them over the control volumes and convert every such integral into
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the sum of fluxes over the boundary faces by means of Gauss’ theorem
(Patankar, 1980).
Our control volume code was validated against the so-called numeri-

cal dynamo benchmark (Christensen et al., 2001). Case 0 (the thermal
convection in a rotating spherical shell) was successfully benchmarked and
presented in Hejda and Reshetnyak (2004) and Case 2 (the dynamo with
conducting and rotating inner core) in Šimkanin and Hejda (2009). Par-
allelization is carried out using the message-passing interface (MPI). The
computations were performed on an IBM Regatta p690+ cluster of SMP
nodes in the John von Neumann Institute for Computing, Jülich Research
Centre; the Sun Grid Engine at the Institute of Physics, Academy of Sci-
ences of CR, Prague; the Nemo cluster (SGI) and PC clusters at the Institute
of Geophysics, Academy of Sciences of CR, Prague.
As stated above, the outer Earth’s core is probably non-uniformly strat-

ified. The upper sublayer (close to CMB) is stably stratified ( ∂T
∂r > 0) and

the lower one (close to ICB) unstably stratified ( ∂T
∂r < 0). We focused our

attention to the case when the thickness of both sublayers is the same. This
case was not investigated in previous studies by Zhang and Schubert (2000),
Šimkanin et al. (2003), Šimkanin et al. (2006), Šimkanin (2008). Conse-
quently, the change of the sign was placed to the middle of the convective
shell.
The dependence of solutions on various values of the Prandtl number,

Pr, the Ekman number, E, and the Rayleigh number, Ra, was investi-
gated. Computations started from zero initial velocity and were performed
for Pr = 10−5, 10−3, 1, 10; E = 10−3, 10−5, 10−7 and Ra ∈ 〈102; 5 × 105〉.
The Prandtl number, the ratio of the thermal diffusion time to the viscous
one, is the most significant dynamic factor in our study. According to the
value of Pr it is possible to split the solutions to three qualitatively different
groups, i.e. convection at low Prandtl numbers, at Pr = 1 and at large
Prandtl numbers.

3.1. Low Prandtl numbers

In the case of low Prandtl numbers (Pr < 1 or Pr � 1) the characteristic
thermal diffusion time is smaller (or much smaller) than the characteristic
viscous diffusion time (τκ < τν or τκ � τν), i.e. thermal diffusion pro-
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cesses dominate over viscous ones. Inertial modes become important (see
left side of Eq. (1), where the inertial term is not negligible in comparison
with the viscous one). The monitored output parameters are the mean ki-
netic energy Ek and the mean angular drift of the solution ω (a solution
drifts slowly with angular frequency ω in longitude). Their dependencies
on the Rayleigh numbers Ra and the Ekman numbers E for Pr = 10−5 and
Pr = 10−3 are given in Fig. 1. It is obvious that Ek and ω increase for

Fig. 1. Dependence of the mean kinetic energy Ek (left column) and the mean angular
drift frequency ω (right column) on the Rayleigh number Ra and the Ekman number E
for Pr = 10−5 (top) and Pr = 10−3 (bottom).

given E with the increase of Ra. Both Ek and ω decrease with the decrease
of E. These features are well-known. In Fig. 1, Ek and ω for small values
of E are always non-zero (they are too small compared to higher values of
E). The cases E = 10−3 and 10−5 were investigated and presented in many
previous analyses. Consequently, we focused on the case E = 10−7 (marked
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Fig. 2. Equatorial sections of temperature T and velocity field components Vr, Vθ, Vϕ

(from left to right) for Ra = 5×105, E = 10−7, Pr = 10−5 (top) and Pr = 10−3 (bottom).

by a circle in Fig. 1). The chosen value of Ra is 5× 105, which represents a
weakly developed convection for given values of Pr, i.e. close to the onset
of convection (represented by the critical Rayleigh number, Rac). The typ-
ical space distributions of temperature and velocity are presented in Fig. 2
(equatorial sections) and in Fig. 3 (axi-symmetric meridional sections). The
dynamics of thermal convection in rapidly rotating spherical systems is fun-
damentally different from that in plane-layer systems, i.e. teleconvection
and multilayer convective mode are characteristic for convection in rotating
spherical systems (Zhang and Schubert, 2000). In our case the convection
is not slightly or significantly suppressed in the stably stratified region as it
is in the presence of magnetic field (Šimkanin, 2008) or if the thickness of
stable sublayer is greater than that of unstable one, but it is developed in
both sublayers. Figs. 2 and 3 provide a typical example of multilayer con-
vective mode (or structure). Convective motions take place simultaneously
in the stable and unstable layers and form a multilayer structure (Zhang
and Schubert, 2000). Convective motions concentrate in two separate loca-
tions: the Busse-type rolls in the unstably stratified sublayer and the zonal
flows in the stably one. This multilayer convective mode is a consequence of
the radial stratification, without which they cannot take place (Zhang and
Schubert, 2000).
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3.2. Prandtl number Pr = 1

In the case of Pr = 1 the characteristic thermal diffusion time is equal to
the characteristic viscous diffusion time (τκ = τν), i.e. thermal and viscous
diffusion processes affect the dynamics of convection equally. Dependencies
of the monitored output parameters on Ra and E for Pr = 1 are given
in Fig. 4. Ek and ω increase for given E with a increase of Ra also for
Pr = 1, but not so rapidly as in the previous case. Ek decreases with a
decrease of E. ω also decreases with a decrease of E, except for the interval
Ra ∈ 〈5 000; 50 000〉. Our attention was again focused on the case E = 10−7

(marked by a circle in Fig. 4). The chosen value of Ra is again 5×105, which
represents a developed convection for Pr = 1. The typical space distribution
of temperature and velocity is presented in Fig. 5 (equatorial sections) and

Fig. 3. Axi-symmetric meridional sections of temperature T and velocity field components
Vr, Vθ, Vϕ (from left to right) for Ra = 5×105, E = 10−7, Pr = 10−5 (top) and Pr = 10−3

(bottom).
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Fig. 4. Dependence of the mean kinetic energy Ek (left) and the mean angular drift
frequency ω (right) on the Rayleigh number Ra and the Ekman number E for Pr = 1.

Fig. 5. Equatorial sections of temperature T and velocity field components Vr, Vθ, Vϕ

(from left to right) for Ra = 5× 105, E = 10−7 and Pr = 1.

Fig. 6. Axi-symmetric meridional sections of temperature T and velocity field components
Vr, Vθ, Vϕ (from left to right) for Ra = 5× 105, E = 10−7 and Pr = 1.

215
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Fig. 7. Dependence of the mean kinetic energy Ek (left) and the mean angular drift
frequency ω (right) on the Rayleigh number Ra and the Ekman number E for Pr = 10.

in Fig. 6 (axi-symmetric meridional sections). There is a convection devel-
oped in both sublayers (not slightly or significantly suppressed in the stably
stratified region) and it is possible to observe the small-scale structures (see
Figs. 5 and 6). In this case we did not observe any multilayer convection.

3.3. Large Prandtl numbers

In the case of large Prandtl numbers (Pr > 1 or Pr � 1) the characteristic
thermal diffusion time is greater (or much greater) than the characteristic
viscous diffusion time (τκ > τν or τκ � τν), i.e. viscous diffusion processes
dominate over thermal ones. Dependencies of the monitored output pa-
rameters on Ra and E for Pr = 1 are given in Fig. 7. Ek and ω increase
for given E with an increase of Ra for Pr = 10 (as in the both previous

Fig. 8. Equatorial sections of temperature T and velocity field components Vr, Vθ, Vϕ

(from left to right) for Ra = 5× 105, E = 10−7 and Pr = 10.
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Fig. 9. Axi-symmetric meridional sections of temperature T and velocity field components
Vr, Vθ, Vϕ (from left to right) for Ra = 5× 105, E = 10−7 and Pr = 10.

cases). Ek decreases with a decrease of E. ω also decreases with a decrease
of E, except for the interval Ra ∈ 〈100; 500〉. As in the previous cases, our
attention was again focused on the value E = 10−7 (marked by a circle in
Fig. 7). The chosen value of Ra is again 5 × 105 which for given values
of Pr represents a developed convection. The typical space distribution of
temperature and velocity is presented in Fig. 8 (equatorial sections) and in
Fig. 9 (axi-symmetric meridional sections). For large Pr it is possible to
observe the convection developed in both sublayers (again not slightly or
significantly suppressed in the stably stratified region). Interestingly, the
convection tends to be multilayer as in the case of low Prandtl numbers.
Looking at Figs. 8 and 9 it is possible to see a development of the multilayer
structures.

4. Conclusions

A systematic parameter study of a rotating convection in non-uniformly
stratified spherical shells in dependence on Prandtl number, Ekman num-
ber and Rayleigh number is presented. Our attention is focused on the
case when the thickness of both sublayers (stable and unstable) is the same.
Such a case was not investigated in previous studies (Zhang, 1994; Zhang
and Schubert, 2000; Šimkanin et al., 2003; Šimkanin et al., 2006; Šimkanin,
2008). Consequently, we place the change of the sign to the middle of the
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Šimkanin R. et al.: Convection in rotating non-uniformly stratified. . . (207–220)

convective shell. The dynamics of thermal convection in rapidly rotating
spherical systems is fundamentally different from that in plane-layer sys-
tems, i.e. teleconvection and multilayer convective mode are characteristic
for convection in rotating spherical systems (Zhang and Schubert, 2000).
In our case, the convection is not slightly or significantly suppressed in the

stably stratified region as it is in the presence of magnetic field (Šimkanin,
2008) or when the thickness of stable sublayer is greater than that of un-
stable one, but it is developed in both sublayers. Thus, we conclude that
our case (when the thickness of both sublayers is the same) is similar to
the case when the thickness of the unstable sublayer is greater than the
stable one. The mean kinetic energy and the angular frequency increase
for given Ekman number with an increase of the Rayleigh number (except
for ω in some small intervals of Ra for Pr ≥ 1, see 3.2 and 3.3). Both the
mean kinetic energy and the angular frequency decrease with a decrease
of the Ekman number. These features are well-known. Cases of small and
large Prandtl numbers are characterized by creation of multilayer convective
structures. Convective motions take place simultaneously in the stable and
unstable layers and form a multilayer structure (Zhang and Schubert, 2000).
Convective motions concentrate in two separate locations: the Busse-type
rolls in the unstably stratified sublayer and the zonal flows in the stably
one. This multilayer convective mode is a consequence of the radial stratifi-
cation, without which they cannot take place (Zhang and Schubert, 2000).
For Pr < 1 the convection is weak and for Pr > 1 developed. On the other
hand, we observed no multilayer convection for Pr = 1 if the convection is
highly developed. It is possible to observe the small-scale structures.
Our results are in agreement with the previous analyses done in the uni-

formly (Busse and Simitev, 2005) or non-uniformly (Zhang, 1994; Zhang
and Schubert, 2000; Šimkanin et al., 2003; Šimkanin et al., 2006; Šimkanin,
2008) stratified spherical shells. The convective motions were qualitatively
described in Zhang (1994), Zhang and Schubert (2000) etc. We showed that
the case characterized by the same thicknesses of both sublayers (which was
not investigated before) is similar to the case in which the thickness of un-
stable sublayer is greater than that of stable one.
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