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Abstract: Numerical simulations of the geodynamo are becoming more realistic because

of advances in computer technology. Here, the geodynamo model is investigated numer-

ically at the extremely low Ekman and magnetic Prandtl numbers using the PARODY

dynamo code. These parameters are more realistic than those used in previous numerical

studies of the geodynamo. Our model is based on the Boussinesq approximation and the

temperature gradient between upper and lower boundaries is a source of convection. This

study attempts to answer the question how realistic the geodynamo models are. Numer-

ical results show that our dynamo belongs to the strong-field dynamos. The generated

magnetic field is dipolar and large-scale while convection is small-scale and sheet-like flows

(plumes) are preferred to a columnar convection. Scales of magnetic and velocity fields

are separated, which enables hydromagnetic dynamos to maintain the magnetic field at

the low magnetic Prandtl numbers. The inner core rotation rate is lower than that in

previous geodynamo models. On the other hand, dimensional magnitudes of velocity and

magnetic fields and those of the magnetic and viscous dissipation are larger than those

expected in the Earth’s core due to our parameter range chosen.

Key words: Hydromagnetic dynamo, Prandtl number, Magnetic Prandtl number, Iner-
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1. Introduction

The magnetic fields of astrophysical bodies in the universe are generated by
a self-consistent hydromagnetic dynamo action in the liquid parts of their
interiors. The magnetic field of the Earth is also generated by a hydromag-
netic dynamo that works in its outer liquid core (Braginsky and Roberts,
1995; Roberts and Glatzmaier, 2000; Christensen and Wicht, 2007). Ob-
servatory and satellite measurements provide us with information about
the current geomagnetic field. In addition, observatory measurements are
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a source of information about the geomagnetic field in the past century.
However, looking further into the past, archaeomagnetism and palaeomag-
netism give us the only information about the geomagnetic field (Roberts
and Glatzmaier, 2000 and Christensen and Wicht, 2007).

Numerical modelling of the geodynamo achieved a significant develop-
ment in past years, numerical models can reproduce magnetic fields that
are really observed and are consistent also with knowledge provided by
palaeomagnetism, e.g. they also reproduce polarity changes and excursions
(Roberts and Glatzmaier, 2000; Glatzmaier, 2005; Christensen and Wicht,
2007; Sakuraba and Roberts, 2009). Despite this progress, many authors
asked whether those models are realistic or how the results of numerical
simulations describe the real observed geomagnetic field (Roberts and Glatz-
maier, 2000; Glatzmaier, 2005; Christensen and Wicht, 2007; Takahashi
et al., 2008; Sakuraba and Roberts, 2009; Wicht and Tilgner, 2010; Chris-
tensen, 2011; Roberts and King, 2013). All numerical models have been
studied for parameters that did not reach parameter ranges relevant to the
Earth’s core. The viscosity is the first example. Geodynamo models use
the values of many orders of magnitude higher than those estimated for
the Earth’s core. Further models use lower magnetic diffusivity than es-
timated in the Earth’s core. Finally, the investigated models are laminar
but convection in the Earth’s core is turbulent. All these simplifications are
forced due to computational constraints and stability of numerical schemes.
Turbulent convection and low viscosity require higher spatial resolution and
smaller time steps. This extends the computing time and, thus, places high
demands on computing resources. In addition to parameters used in nu-
merical modelling of geodynamo, it is necessary to mention approximations
regarding the outer Earth’s core. The real fluid in the Earth’s core is fully
compressible. For simplification, many dynamo models use the Boussinesq
approximation, which assumes that the fluid is incompressible. However,
this is an acceptable simplification for the Earth’s core. Another step for-
ward is the anelastic approximation, the essence of which is a compressible
fluid in the limit of low Mach number. This neglects sound waves, their
typical time scales are negligible compared to typical time scales of geomag-
netic phenomena. Although anelastic approximation is more apppropriate,
many dynamo models are still based on the Boussinesq approximation. This
is mainly because it saves computing resources and the results obtained are
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very similar to those provided by the anelastic approximation (Roberts and
Glatzmaier, 2000; Glatzmaier, 2005; Christensen and Wicht, 2007; Taka-
hashi et al., 2008; Sakuraba and Roberts, 2009; Wicht and Tilgner, 2010;
Christensen, 2011; Roberts and King, 2013). Hydromagnetic flows in the
Earth’s core that generate the geomagnetic field are generally believed to
be driven by buoyancy. The freezing of the inner core provides the thermal
buoyancy from the release of latent heat at the inner core boundary (ICB),
as well as compositional buoyancy as the light alloying core constituent is
released during freezing. Thus, the slowly growing ICB fosters thermochemi-
cal convection, which drives the geodynamo (Roberts and Glatzmaier, 2000;
Glatzmaier, 2005; Christensen and Wicht, 2007; Takahashi et al., 2008;
Sakuraba and Roberts, 2009; Wicht and Tilgner, 2010; Christensen, 2011;
Roberts and King, 2013; Kyselica and Guba, 2016; Šimkanin et al., 2017).
Thus, superadiabatic radial temperature, concentration or thermochemical
gradients between the ICB and the core-mantle boundary (CMB) are the
source of buoyancy in many geodynamo models. Further models contain
internal heat sources, which allow studying the density stratified spherical
shells also in the Boussinesq approximation. The precessionally driven hy-
dromagnetic dynamos are possible, too. Previously, it was assumed that a
dynamo could not be precessionally or tidally driven, however, those models
were linear. Thus, the kinetic energy of fluid motions strongly dissipated in
the boundary layers, leading to malfunctioning dynamo. However, reflect-
ing non-linear terms (the full 3D dynamo problem), numerical simulations
showed that precessionally driven dynamos do exist and can provide dipolar
magnetic fields. Similarly, it appears that the tidally driven flows do not
markedly dissipate in the boundary layers. Thus, precessionally and tidally
driven flows can be a source for a hydromagnetic dynamo (Le Bars et al.,
2011). The current state of numerical dynamo modelling is described very
well by Christensen and Wicht (2007), Takahashi et al. (2008), Sakuraba
and Roberts (2009), Wicht and Tilgner (2010), Christensen (2011), Taka-
hashi and Shimizu (2012), Roberts and King (2013).

Since the first 3D self-consistent dynamo simulation performed by Glatz-
maier and Roberts, numerical modelling of self-consistent dynamos made
huge progress but the models studied later used larger values of viscosity
than those used by Roberts and Glatzmaier (2000). Nevertheless, these
were able to clarify many of the physical mechanisms that accompany the
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geomagnetic field generation. Sakuraba and Roberts (2009) and Soderlund
et al. (2015) used lower values of viscosity than those used by Roberts and
Glatzmaier (2000), however, their models were different. Sakuraba and
Roberts (2009) investigated how the results from two otherwise identical
models differed when the temperature of the CMB was specified in two dis-
tinct ways. Their Uniform Surface Temperature Model (USTM) used the
same thermal conditions as those used by Soderlund et al. (2015). Their
Uniform Heat Flux Model (UHFM) assumed the same total heat emerged
from the core, but achieved that by prescribing constant radial temperature
gradient. Their results showed that UHFM created a strong Earth-like field
and large-scale magnetic field and flow patterns were a robust characteris-
tic for smaller viscosities. A difference between USTM and UHFM laid in
different ability to create large-scale circulation in the core. Another param-
eters that limit numerical simulations are the diffusivities. For the Earth’s
outer core the kinematic viscosity ν = 10−6 m2 s−1, the thermal diffusivity
κ = 5 × 10−6 m2 s−1 and the magnetic diffusivity η = 2 m2 s−1 are typical
estimates (Fearn, 2007; Roberts and Glatzmaier, 2000). In most numerical
simulations scientists set ν/κ = 1 (the ratio ν/κ is known as the Prandtl
number). Christensen and Wicht (2007) estimated that values of ν/κ for
the Earth’s outer core lie between 0.1 and 1. Recent estimates of the ther-
mal diffusivity suggest that the values of κ range from κ = 1.4×10−7m2 s−1

to κ = 9.3×10−6m2 s−1 and lead to acceptance of ν/κ from interval 0.1−7,
which is consistent with the values expected for thermally driven dynamos
(ν/κ < 1) and for thermochemically driven ones (ν/κ > 1). Original esti-
mates for the magnetic diffusivity, η, suggested η = 2m2 s−1, which resulted
in ν/η = 10−6 (the ratio ν/η is known as the magnetic Prandtl number,
Pm). However, some recent estimates give values of η that are much larger,
η = 12 m2 s−1, which leads to a larger value of the magnetic Prandtl num-
ber, ν/η = 10−5. Recent estimates of the thermal and magnetic diffusivities
have been done by Pozzo et al. (2012) and Gomi et al. (2013).

To investigate the generated magnetic fields at the lower values of vis-
cosity, the Prandtl and magnetic Prandtl numbers than those used in the
previous models is the prime motivation of the present study. We take ap-
proximately the same value of viscosity as used by Sakuraba and Roberts
(2009) but our values of the Prandtl and magnetic Prandtl numbers are
lower. The model and governing equations are presented in Section 2, nu-
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merical results are provided in Section 3 and Section 4 is devoted to the
discussion of the results and to conclusions.

2. Model and basic equations

Here we consider dynamo action that is due to thermal convection of an
electrically conducting incompressible fluid in the Boussinesq approxima-
tion, in a spherical shell (ri < r < ro) rotating with angular velocity Ω. The
evolution of the magnetic field B, the velocity V and the temperature T
are described by the following system of dimensionless equations:

E

(
∂V

∂t
+ (V · ∇)V −∇2V

)
+ 21z ×V+∇P =

=Ra
r

ro
T +

1

Pm
(∇×B)×B , (1)

∂B

∂t
= ∇× (V ×B) +

1

Pm
∇2B , (2)

∂T

∂t
+ (V · ∇)T =

1

Pr
∇2T , (3)

∇ ·V = 0 , ∇ ·B = 0 . (4)

The shell gap L = ro − ri is used as the typical length. The aspect ratio of
the inner core, ri/ro , is set to 0.35, which is the current value for the Earth.
(r, θ, ϕ) is the spherical system of coordinates, 1z is the unit vector. Time,
t, is measured in the unit of L2/ν, velocity, V, in ν/L, magnetic induction,
B, in (ρμηΩ)1/2, temperature, T, in ΔT, and pressure, P , in ρν2/L2. The
dimensionless parameters appearing in Eqs. (1)-(4) are the Prandtl number,
Pr = ν/κ, the magnetic Prandtl number, Pm = ν/η, the Ekman number,
E = ν/ΩL2 and the modified Rayleigh number Ra = αg0ΔTL/νΩ; in the
above expressions κ is the thermal diffusivity, ν is the kinematic viscosity, μ
is the magnetic permeability, η is the magnetic diffusivity, ρ is the density,
α is the coefficient of thermal expansion, ΔT is the drop of temperature
through the shell and g0 is the gravity acceleration at r = ro.

Eqs. (1)-(4) are closed by the non-penetrating and no-slip boundary con-
ditions for the velocity field at the rigid surfaces and those of fixed temper-
ature boundary conditions (the constant temperature Ti = 1 and To = 0 at
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the inner and outer boundaries of the shell, respectively). The outer bound-
ary is electrically insulating (the magnetic field on this boundary matches
with the appropriate potential field in the exterior which implies no exter-
nal sources of the field), while the inner boundary is electrically conducting
(electric conductivities of the outer and inner core are assumed to be the
same, and B is continuous across r = ri).

3. Results

Eqs. (1)-(4) are solved using the PARODY dynamo code (Dormy, 1997;
Dormy et al., 1998; Aubert et al., 2008; Raynaud and Dormy, 2013). The
PARODY code solves the non-dimensional Boussinesq equations for time-
dependent thermal convection in a rotating spherical shell filled with an
electrically conducting fluid. It is a semi-spectral method, using spherical-
harmonics decomposition in the θ- and ϕ-directions, and second-order finite
differencing in the r-direction. This makes it suitable for parallel compu-
tation on distributed memory clusters. Parallelization is carried out using
the message-passing interface (MPI). The time integration uses the implicit
second-order Crank-Nicolson scheme (Dormy, 1997; Dormy et al., 1998;
Aubert et al., 2008; Raynaud and Dormy, 2013). To present our results,
the MATLAB routines provided by Julien Aubert are used for the visu-
alization (Aubert et al., 2008). The computations were performed in the
Jülich Supercomputing Centre on the Supercomputer JUROPA and the vi-
sualizations on the NEMO cluster (SGI) at the Institute of Geophysics, the
Czech Academy of Sciences, Prague.

In our simulation, the spatial resolution was set to (Nr × Nθ × Nϕ) =
(2304 × 1152 × 2304), where Nr, Nθ, Nϕ are the numbers of grid points
in the r-, θ-, ϕ-directions. Computations started from zero initial velocity
and a strong dipole-dominated field with B ∼ O(1). The control param-
eters are E, Pr, Pm, and Ra and are summarised in Table 1, which also
shows corresponding values for the Earth’s core and for the similar model
of Sakuraba and Roberts (2009). Our magnetic Prandtl number is much
smaller than that of Sakuraba and Roberts (2009), as well as our Prandtl
number, which is more earth-like. Our Rayleigh number exceeds the criti-
cal Rayleigh number, Ra,c, for which convection is marginally possible, by
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a factor of 3.23. However, our Ra is smaller than the one used by Sakuraba
and Roberts (2009). Therefore, their convection is more overcritical than
ours. At Pr = 0.2, thermal diffusion processes dominate over the viscous
ones because the characteristic viscous diffusion time is five times greater
than the characteristic thermal diffusion time.

Table 1. Control parameters used in our simulation, in dynamo simulations of Sakuraba

and Roberts, 2009, and the typical values for the Earth’s core.

Parameter Our model Sakuraba & Roberts 2009 Earth’s core

E 10−7 1.2× 10−7 10−15

Pr 0.2 1 0.2
Pm 9× 10−3 0.2 5× 10−6

Ra 1.5× 105 9× 109 1024

At E = 10−7, Pmmin � 2.5× 10−3, where Pmmin is the minimum value of
the magnetic Prandtl number, at which dipolar dynamos exist. Christensen
and Aubert (2006) showed that this value varies with the Ekman number as

Pmmin � 450E3/4 . (5)

This empirical relation was confirmed for Pr = 1 and E ≥ 3 × 10−6

(Christensen and Aubert, 2006; Takahashi and Shimizu, 2012).
The output parameters are provided in Table 2. They are presented

in both the dimensionless (as they have been computed) and the dimen-
sional forms (to point out how realistic they are). Results show that the
dimensionless magnetic energy, Em, is approximately 50 times greater than
the dimensionless kinetic energy of the outer core, Ek. In its dimensional
form, Em is much greater than Ek. The Elsasser number, Λ, is greater than
one, which is a feature typical for the strong-field dynamos. The magnetic
Reynold number, Rm, is large enough to maintain a working hydromagnetic
dynamo. The Rossby number, Ro, is small so that the effects of inertia are
not observable as it was the case by Šimkanin and Hejda (2011, 2013).
A similar situation occured at E = 10−6 in the study by Šimkanin (2016),
although our Pm ∼ Pmmin . It should be noted that the effects of the inertia
can be neglected mostly when Pm > Pmmin as was shown in Šimkanin and
Hejda (2011, 2013) and Šimkanin (2016).

We now focus on the power and angular momentum balances. Power sup-
ply, PB, represents the buoyant power input that maintains the dynamo.
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Table 2. Output parameters.

Name of entry Symbol Dimensionless Dimensional Unit
value value

Kinetic Energy (outer core) Ek 8.7× 107 3.5× 1021 J
Magnetic Energy (outer+ Em 2.6× 109 1.88× 1032 J
inner core)
Fluid Velocity V 5.06× 104 0.83 m s−1

Magnetic Field B 8.47 0.013 T
Rossby number Ro 1.32× 10−3

Magnetic Reynolds number Rm 119
Elsasser number Λ 4.68
Power supply PB 1.45× 1014 3.59× 1016 W
Viscous dissipation Qν 1.8× 1013 4.45× 1015 W
Ohmic dissipation Qη 1.27× 1014 3.14× 1016 W
Viscous torque Γν 7.3× 1013 3.47× 1027 kgm2 s−1

Magnetic torque Γη −4.13× 108 −3.47× 1027 kgm2 s−1

Inner core rotation rate ωi 5.4× 103 3.94× 10−8 ◦/s

PB has to be balanced by the viscous dissipation, Qν , and the ohmic dis-
sipation, Qη. As provided in Table 2, Qη/Qν = O(10) and that Qη +Qν is
balanced with PB, which shows our solution has got to its approximately
steady state. The angular momentum balance is given by the angular mo-
mentum equation, which in the dimensional form, takes the following form:

I
dωi

dt
= Γη + Γν , (6)

where I is the moment of inertia of the inner core, ωi is the inner core rota-
tion rate, Γη is the magnetic torque and Γν is the viscous torque. The inner
core is free to move, which leads to the so-called superrotation (for more
details, see Roberts and Glatzmaier, 2000). In our case, ωi = 3.94×10−8 ◦/s,
which gives 1.2 ◦/year, see Table 2.

The typical spatial distribution (Hammer projection) of radial magnetic
field component, Br, at r = ro is depicted in Fig. 1, as well as the equato-
rial sections of the radial components of the magnetic and velocity fields, Br

and Vr, respectively, and the temperature field. All the panels are snapshots
taken at the time t = 2. The red (blue) colours indicate positive (negative)
values. The generated magnetic field is dipolar with large-scale structure
(see Figs 1 and 3). However, small-scale structures are more visible com-
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Fig. 1. Spatial distribution (Hammer projection) of radial magnetic field component, Br,
at r = ro (the top row) and equatorial sections of the radial components of the magnetic
field, B, the velocity field, V, and the temperature, T (the bottom row), for the Rayleigh
number Ra = 1.5 × 105, the Ekman number E = 10−7, the Prandtl number Pr = 0.2
and the magnetic Prandtl number Pm = 9 × 10−3. Red (blue) colours indicate positive
(negative) values. The snapshots correspond to t = 2.

pared to the situation with larger values of E. A large-scale structure of
the magnetic field is also visible on the equatorial section of Br while the
velocity field is small-scale. Having compared our magnetic field with those
in Fig. 1 of Sakuraba and Roberts (2009), we found that our results are very
similar to the USTM model presented in their analysis. Similarly as for the
USTM model, large-scale flux patches are not apparent in the present case.
The small-scale character of convection is a result of the small value of the
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Ekman number. As seen in Fig. 1, the convection has the form of sheet-like
flows (or sheet plumes). This supports the results provided in Takahashi
and Shimizu (2012) and Kageyama et al. (2008). They showed that at the
small Ekman number the convection has the form of sheet plumes or ra-
dial sheet jets rather than the columnar convection as the typical feature
at the large Ekman numbers. This character does not depend on boundary
conditions and driving mode of convection (Takahashi and Shimizu, 2012;
Kageyama et al., 2008). The temperature distribution, shown in Fig. 1, is
not as typical as for a columnar convection, instead of that, thermal plumes
are observed.

Meridional sections of the poloidal and toroidal magnetic field compo-
nents, BP and BT , respectively, as well as the poloidal and toroidal velocity
field components, VP and VT , respectively, are presented in Fig. 2. All the
panels are snapshots taken at t = 2. Similarly as in the study by Šimkanin
(2016), where E = 10−6 was used, the magnetic field is regenerated in the
tangent cylinder. It is not a surprising fact since the value of Ro is small
in the present case. Thus, the magnetic field is strong enough to initiate
the effect described by Sreenivasan and Jones (2006). Šimkanin and Hejda
(2011, 2013) showed that the absence of this effect is responsible for the
weak magnetic field in the polar regions at low Prandtl numbers and at
Pm ∼ Pmmin

. In their studies, the magnetic field was not regenerated in
the tangent cylinder, which led to the magnetic field being weak in the
polar regions. The present study shows that at low E the magnetic field
is regenerated in the tangent cylinder despite the fact that our Pr is low
and Pm ∼ Pmmin

. Inside the tangent cylinder, in the region of the polar
vortices, thermal winds are strongly modified by magnetic winds due to
Lorentz force. Therefore, the magnetic field is strong enough to initiate the
polar magnetic upwelling, which stabilises the stronger magnetic field in
the polar region. Consequently, we conclude that the weak magnetic field
in the polar region, as a consequence of the absence of the effect described
in Sreenivasan and Jones (2006) and Šimkanin and Hejda (2011, 2013),
is observable mainly at larger values of the Ekman number while at low
Ekman numbers this phenomenon does not occur. The results of Šimkanin
(2016), together with the results presented in the present paper, support
this conclusion and show that the Lorentz and Coriolis forces dominate the
viscous one and the inertia.
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Fig. 2. Meridional sections of the poloidal and toroidal magnetic field components, BP

and BT , respectively (top row, from left to right), and the meridional sections of the
poloidal and toroidal velocity field components, VP and VT , respectively (bottom row,
from left to right). Values of the dimensionless parapeters are Ra = 1.5× 105, E = 10−7,
Pr = 0.2 and Pm = 9× 10−3. Red (blue) colours indicate positive (negative) values. The
snapshots correspond to t = 2.

The separation of scales of the magnetic and velocity fields is clearly
visible in Fig. 3, where we show the spectra of the mean-square magnetic
and velocity field powers. The generated magnetic field is dominated by a
large-scale axial dipole field but for the velocity field higher harmonics dom-
inate (the velocity field has the form of small-scale sheet plumes). The scale
separation enables hydromagnetic dynamos to maintain the magnetic field
at low values of Pm (for more details, see Takahashi and Shimizu, 2012).
The scale separation also explains why Pmmin

decreases with decrease of E
(Takahashi and Shimizu, 2012; Christensen and Aubert, 2006).
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Fig. 3. The mean-square magnetic field power spectrum (top) and the mean-square ve-
locity field power spectrum (bottom) as functions of harmonic degree l.

4. Conclusions

In this study, hydromagnetic dynamos are investigated at extremely small
values of Ekman and magnetic Prandtl numbers, which we believe to be a
step to a more realistic geodynamo model. Roberts and Glatzmaier (2000),
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Glatzmaier (2005), Roberts and King (2013) posed a question whether dy-
namo models are realistic and how realistic they are. Now we look at
our extremely small parameters to see how realistic they are. Setting
Ω = 7.29 × 10−5 rad s−1 and L = 2.26 × 106 m (as given for the Earth),
we obtain in dimensional forms:

– E = 10−7 ⇒ ν = 35.19 m2 s−1

– Pm = 9× 10−3 ⇒ η = 4.13 × 103 m2 s−1

– Pr = 0.2 ⇒ κ = 185.98 m2 s−1

Most estimates of the viscosity are ν = 10−6m2 s−1, which makes E = 10−15.
We use “extremely low” E = 10−7, which gives ν = 35.19 m2 s−1. This vis-
cosity is much larger than that of any liquid readily available. Another
small parameter that limits numerical simulation is Pm. Most estimates
of the magnetic diffusivity are η = 2 m2 s−1, which gives for the Earth’s
core Pm = 10−6 but our small Pm = 9 × 10−3 and ν = 35.19 m2 s−1 gives
η = 4.13×103m2 s−1. Using Pr = 0.2 and taking ν = 35.19m2 s−1 we obtain
κ = 185.98 m2 s−1 instead of κ = 5 × 10−6 m2 s−1, which would be as exp-
tected for the Earth’s core. Consequently, we still cannot reach parameter
ranges relevant to the Earth’s core. Another parameter that is impossible
to reach computationally is Ra. We use Ra = 3.23Ra,c, which represents
the laminar convection. However, the convection in the Earth’s core is tur-
bulent, i.e. high developed (Ra � Ra,c). Thus, in terms of the control
parameters, our dynamo model is still out of ranges relevant to the Earth’s
core. In addition, the model utilises the Boussinesq approximation (the in-
compressible fluid) instead of a fully compressible fluid of the Earth’s core.
The anelastic approximation seems to be more realistic than the Boussinesq
one. Our dynamo is driven by the temperature gradient between the CMB
and the ICB, instead of more realistic heat flux from the ICB due to solidifi-
cation processes in the inner Earth’s core. Therefore, though more realistic
than the previous models, the present model is still not a real geodynamo.

The mean square root velocity in the present case is V = 0.83 m s−1,
which is much larger than the typical fluid velocity in the Earth’s core,
VE = 4× 10−4 ms−1. The mean square root magnetic field is B = 0.013 T,
which is a field that is stronger than the typical Earth’s magnetic field
strength 3 × 10−3 T. In addition, we assume Pm ∼ Pmmin

while for the
Earth’s core it should be Pm > Pmmin

(in case the empirical relation (5)
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is valid at E = 10−15). Values of Em and Λ show that our dynamo is
the strong-field dynamo, which is expected for the real geodynamo. This
implies that our solution bifurcated from the bifurcation point Ra,c to the
strong-field branch (see Fig. 19 by Roberts and King, 2013). It should be
noted that the most of geodynamo models are α2 – weak field dynamos
instead of the αω – strong field dynamos, which is expected for the real
geodynamo in the Earth’s core (Christensen and Wicht, 2007 and Roberts
and King, 2013).

Our inner core rotation rate ωi = 1.2 ◦/year, which is more realistic than
2–3 ◦/year, as provided in previous numerical simulations (Christensen and
Wicht, 2007 and Roberts and King, 2013). For the Earth’s core, 0.25–
0.48 ◦/year is expected. Our results support the conclusion of Roberts and
Glatzmaier (2000), who showed that the large value of ωi is due to E being
too large than expected for the Earth’s core (as usual in numerical simula-
tions, ours included). For the Earth’s core, the values of the magnetic and
the viscous torques are unknown. Thus, we are not able to compare them
with our results.

Our buoyant power input, viscous and ohmic dissipations are roughly
1016 W. However, the estimate for the Earth’s core is roughly 1 TW, so our
results give 104−times enhanced values. An explanation should follow from
our parameter range. Values of velocity and magnetic field are enhanced,
in comparison with the Earth’s parameter regime, so that the dissipation is
expected to be enhanced as well, particularly at Pm ∼ Pmmin

.
In Table 2 we see that the inertia, characterised by the Rossby number,

Ro, is low and does not affect the dynamo action. This supports the results
provided by Šimkanin (2016) and in particular by Soderlund et al. (2015),
where the authors showed that at low E the inertia is negligible.

Finally, one could argue that our computations were performed only for
two time units. However, despite the relatively short time interval consid-
ered, our solution almost reached its steady state. Moreover, we had to take
into account the limitation for the CPU time. Forasmuch as we had to use
high spatial resolution, which led to very small time step, so that the com-
putation were too costly and CPU time consuming. Even though we have
used extremely low values of the Ekman and magnetic Prandtl numbers, it
would be necessary to use even lower values of E and Pm and higher values
of Ra (turbulent dynamo models) in order to reach the parametric regime
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of the Earth. In addition, it would be necessary to utilise rather anelastic
models, which would be driven by the heat flux from the ICB.
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Šimkanin J., Kyselica J., Guba P., 2017: Inertial effects on thermochemically-driven
convection and hydromagnetic dynamos in a spherical shell. Geophys. J. Int., doi:
10.1093/gji/ggx529.

Sakuraba A., Roberts P. H., 2009: Generation of a strong magnetic field using uniform
heat flux at the surface of the core. Nature Geosci., 2, 802–805.

Soderlund K. M., Sheyko A., King E. M., Aurnou J. M., 2015: The competition between
Lorentz and Coriolis forces in planetary dynamos. Progress in Earth and Planetary
Science, 2, 24, doi: 10.1186/s40645-015-0054-5.

Sreenivasan B., Jones C. A., 2006: Azimuthal winds, convection and dynamo action in the
polar regions of planetary cores. Geophys. Astrophys. Fluid Dyn., 100, 319–339.

Takahashi F., Matsushima M., Honkura Y., 2008: Scale variability in convection-driven
MHD dynamos at low Ekman number. Phys. Earth Planet. Int., 167, 168–178.

Takahashi F., Shimizu H., 2012: A detailed analysis of a dynamo mechanism in a rapidly
rotating spherical shell. J. Fluid Mech., 701, 228–250.

Wicht J., Tilgner A., 2010: Theory and modeling of planetary dynamos. Space Sci. Rev.,
152, 501–542.

276




