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Abstract: The components of the Eötvös matrix are useful for various geodetic applica-

tions, such as interpolation of the elements of the deflection of the vertical, determination

of gravity anomalies and determination of geoid heights. A torsion balance instrument

is customarily used to determine the Eötvös components. In this work, we show that it

is possible to estimate the Eötvös components at a point on the Earth’s physical surface

using gravity measurements at three nearby points, comprising a very small network. In

the first part, we present the method in detail, while in the second part we demonstrate

a numerical example. We conclude that this method is able to estimate the components

of the Eötvös matrix with satisfactory accuracy.
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1. Introduction

The Eötvös matrix is the second order derivative of the Earth’s gravity po-
tential W at a point S on the Earth’s physical surface. This means that the
Eötvös matrix consists of the second order partial derivatives of the gravity
potential expressed in a local Cartesian system (x, y, z) which is centred at
point S (more details will be presented in the next section). The compo-
nents of the Eötvös matrix – except the component of vertical gradient Wzz

– can be measured with a torsion balance instrument. The first measure-
ments (Völgyesi, 2001) were made by Lorand Eötvös in 1889 in Hungary
and the first successful geophysical exploration in 1916.
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The Eötvös matrix components are divided into two groups: a) the curva-
ture group – or the curvature data – which includes the second order partial
derivatives Wxx, Wxy and Wyy and b) the horizontal gradient group – or the
horizontal gradient data – Wxz and Wyz. The components of the Eötvös
matrix which belong to the first group are necessary for the determination
of the mean curvature, the Gauss curvature of the actual equipotential sur-
face at a point and the azimuth of the maximum sectional curvature. The
components of the Eötvös matrix which belong to the second group are
necessary to describe the deviation between two neighbouring equipotential
surfaces, since equipotentials are not parallel.

Conventionally, the unit used for expressing the values of the Eötvös ma-
trix components is the Eötvös unit (1 E = 10−9 sec−2), in honour of Lorand
Eötvös. The precision of these values from torsion balance measurements is
approximately ±1E, while the standard deviation varies: for the first group
the standard deviation is ±2 to ±4E and for the second group ±1 to ±2E.

The determination of the components of the Eötvös matrix is significant
to many applications. These applications are related either to one of the
previous mentioned groups or they are related to the whole Eötvös matrix.
For example, the “Geodetic Singularity Problem” is related to all compo-
nents of the Eötvös matrix: if the determinant of the Eötvös matrix at a
point P is equal to zero, then the Eötvös matrix is rank deficient and this
classifies point P as a singular point. This means that it is not possible to
replace (pseudo)differentials of unholonomic coordinate systems, which are
related to moving local astronomical frames, with differentials of holonomic
coordinate systems (Grafarend, 1971; Livieratos, 1976).

Applications related to the first group (Völgyesi, 1993, 1998, 2001 and
2015) include the determination of the geoid undulation by an alternative
solution for the astrogeodetic levelling and the interpolation of the compo-
nents of the deflection of the vertical. Applications which are related to the
second group (Völgyesi et al., 2005) include the determination of gravity and
gravity anomaly, mainly for geophysical purposes, and the determination of
vertical gradients. In addition, the reconstruction of the gravity potential
function, namely determination of the function of the gravity potential and
its first and second order partial derivatives, including the vertical gradient,
is worth mentioning (Völgyesi, 2015; Toth et al, 2001). Finally, the appre-
ciation of the Eötvös matrix has recently increased, since a large number of
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torsion balance measurements are carried out around the world (Völgyesi,
2015), in order to detect lateral underground mass inhomogeneities and ge-
ological fault structures.

The aim of the present work is to develop a method for the estimation
of the Eötvös components using a gravimeter instead of a torsion balance
instrument. The components will be estimated at a chosen point S on the
Earth’s physical surface, using gravity measurements at S and three nearby
points, comprising a very small network. The proposed method will be
described in detail in the next sections.

2. Methodology

2.1. Estimation of the values of the Eötvös matrix components
except Wxy

Let S be a point on the Earth’s physical surface with known geodetic coor-
dinates, gravity value and geometric height. The Earth’s gravity potential
is expressed in a local Cartesian system (x, y, z), which is centred at point
S (point of interest), the z-axis is perpendicular to the equipotential sur-
face passing through point S pointing upwards, the x-axis is tangent to the
equipotential surface passing through point S pointing North and the y-axis
is tangent to the aforementioned equipotential surface pointing East.

In addition, let A, B, C be three points in the neighbourhood of point S
(within a few metres) with known local Cartesian coordinates and gravity
values gA, gB , gC and gS . Point A is taken on the x-axis (xA, yA = 0, zA),
point B on the y-axis (xB = 0, yB , zB) and point C on the z-axis (xC = 0,
yC = 0, zC), as in Figure 1.

The value of Wzz can be directly computed from the gravity measure-
ments at points S and C (see Eq. (2.4)). For the other four Eötvös compo-
nents at point S we proceed as follows:

A parametric vector equation for the actual equipotential surface of point
S around this point, expressed in the local Cartesian system, is:

s̄ : �3 ⊃ U → �3 : (x, y) → s̄(x, y) = (x, y, z(x, y)) , (2.1)

and the tangent vectors of the equipotential surface are:
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Fig. 1. The geometry of the local gravimetric network, showing the main concepts and
the quantities involved in the computations.

∂s̄

∂x
≡ s̄x =

(
1, 0,−Wx

Wz

)
, (2.2)

∂s̄

∂y
≡ s̄y =

(
0, 1,−Wy

Wz

)
. (2.3)

The value of Wzz at point S is obtained by:

Wzz(S) ≡ Wzz = −gC − gS
zC

. (2.4)

Approximate, temporary values of Wxx and Wyy at point S can be ob-
tained as follows:

Let x1, y1 be the axes of the principal directions at point S, namely
the directions along which the sectional curvature takes its minimum and
maximum values. We set:

W t
yy(S) ≡ W t

yy ≈ Wy1y1(S) ≡ Wy1y1 := −gSk
e
2(S) . (2.5)
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The quantity ke2 is the principal curvature of the normal equipotential
surface in the East–West direction at point S, which (Manoussakis, 2013)
is equal to:

ke2(S) ≡ ke2 = −Uyy(S)

γS
, (2.6)

where

Uyy(S) = −γQk2(Q) + γQk
2
2(Q)hS , (2.7)

and γQ, γS , are the values of normal gravity at points Q and S, respectively,
and hS is the geometric height of point S. In (2.7), point Q is the projection
of point S on the ellipsoid of revolution along the vertical line to the ellipsoid
(Hofmann-Wellenhof and Moritz, 2006), k2 is the principal curvature of the
ellipsoid along the East–West direction and U stands for the Eötvös matrix
of the normal gravity field. From Poisson’s equation we can also estimate
W t

xx at point S:

W t
xx = 2ω2 −Wzz −W t

yy . (2.8)

We now proceed to estimate Wxz and Wyz.
Let A′ be the projection of point A on the tangent plane of the equipo-

tential surface at point S and A′′ the intersection of the line AA′ with the
actual equipotential surface passing through point S (see Figure 1). Using
a Taylor series expansion, we get:

s̄(A′′)− s̄(A) = s̄x(S)xA + s̄y(S)yA +

+
1

2

(
s̄xx(S)x

2
A + 2s̄xy(S)xAyA + s̄yy(S)y

2
A

)
, (2.9)

where the symbols s̄xx, s̄xy and s̄yy stand for the second order partial
derivatives of the vector equation of the actual equipotential surface passing
through point S.

Multiplying both sides with the unit normal vector and, having in mind
that point A is on the xz plane, we end up with:

hN (A) ≡ ∣∣z(A′′)
∣∣ = ∣∣∣∣12Lactx

2
A

∣∣∣∣ , (2.10)

where Lact is an element of the second fundamental form of the actual
equipotential surface at point S, namely:
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Lact = 〈N̄ , s̄xx〉 , (2.11)

where

N̄ =
1

|s̄x × s̄y|(s̄x × s̄y) . (2.12)

The value of Lact is given by

Lact = −W t
xx

gS
. (2.13)

The small angle εA (see Fig. 1) is computed by:

tan εA ∼= εA =
|z(A)|
|xA| =

∣∣∣∣12LactxA

∣∣∣∣ . (2.14)

Since A′ is the projection of point A on the tangent plane of the actual
equipotential surface at point S (zA′ = 0), we obtain:

gA′ = gA −Wzz(zA′ − zA) = gA +WzzzA , (2.15)

Wz(A
′) = −gA′ cos εA . (2.16)

The values of Wz are known at points A′ and S, so the value of the
second order partial derivative Wxz at point S is given by:

Wxz =
Wz(A

′)−Wz(S)

xA
=

gS − gA′ cos εA
xA

. (2.17)

Repeating the above procedure for a point B on the West–East direction,
we have similar relations, which lead to the estimation of the value of the
second order partial derivative Wyz at point S:

hN (B) ≡ ∣∣z(B′′)
∣∣ = ∣∣∣∣12Nacty

2
B

∣∣∣∣ , (2.18)

Nact = 〈N̄ , s̄xx〉 = −W t
yy

gS
, (2.19)

tan εB ∼= εB =
|z(B′′)|
|yB| =

∣∣∣∣12NactyB

∣∣∣∣ . (2.20)
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Since B′ is the projection of point B on the tangent plane of the actual
equipotential surface at point S, we obtain:

gB′ = gB −Wzz(zB′ − zB) = gB +WzzzB , (2.21)

Wz(B
′) = −gB′ cos εB . (2.22)

Therefore, the second order partial derivative Wyz at point S is given by:

Wyz =
Wz(B

′)−Wz(S)

yB
=

gS − gB′ cos εB
yB

. (2.23)

2.2. Estimation of the value of the Eötvös matrix component Wxy

Let β be the angle of the principal direction x1 with the x axis (see Fig. 1).
The transformation between the two coordinate systems is given by:

⎡
⎢⎣xy
z

⎤
⎥⎦ =

⎡
⎢⎣cosβ − sinβ 0

sinβ cos β 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣x1y1
z1

⎤
⎥⎦. (2.24)

Using Eq. (2.24), we can relate the gradients of the potential between
the two systems:

Wx1 = Wx
∂x

∂x1
+Wy

∂y

∂x1
+Wz

∂z

∂x1
= Wx cos β +Wy sin β , (2.25)

which leads to:

W t
xx

(
−1

2
sin 2β

)
+W t

xy cos 2β +W t
yy

(
1

2
sin 2β

)
= Wx1y1 . (2.26)

By definition, the right-hand side of Eq. (2.26) is equal to zero. Dividing
the terms of this equation by cos 2β (tentatively assuming that β 
= π/4)
we end up with the following relation:

W t
xy =

1

2
(Wxx −Wyy) tan 2β . (2.27)
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Therefore, in order to determine the value of W t
xy, the angle β between

the principal axis x1 and the x axis has to be known (see Fig. 1). This
means that additional information, for the behaviour of the gravity field
along the equipotential surface of point S, is needed. If this information is
not given (since the actual value of the angle β cannot be extracted from
gravity measurements alone), it is necessary to find an estimate of the angle
β using known components of the Eötvös matrix. One estimate of the angle
β may be deduced from (Völgyesi, 1993):

β := arctan
Wyz

Wxz
. (2.28)

From Eqs. (2.28) and (2.27) we can estimate a temporary value of W t
xy.

However, one should examine the limitations of this approach. From Eqs.
(2.27) and (2.28), the angle β is equal to zero when either of the following
conditions are met:

Wxy = 0 or Wyz = 0 . (2.29)

If the first condition holds, for small variations along the y-axis we have
that:

Wx(B
′) = WxyyB = 0 , (2.30)

and for small variations along the x-axis:

Wy(A
′) = WxyxA = 0 . (2.31)

The Eötvös matrix can also be expressed as (Dermanis, 1993):

ES =

⎡
⎢⎢⎣
Wxx Wxy Wxz

Wxy Wyy Wyz

Wxz Wyz Wzz

⎤
⎥⎥⎦
S

=

⎡
⎢⎢⎣

−gk1 −gτ1 −gkNS

−gτ1 −gk1 −gkEW

−gkNS −gkEW 2ω2 + gk1 + gk2

⎤
⎥⎥⎦
S

, (2.32)

where τ1 is the torsion of the geodesic line which is tangent to the x-axis at
point S and kNS and kEW are the North–South and East–West curvature
components of the plumbline passing through point S, respectively.

Since Wxy is equal to zero, the torsion of the geodesic line is equal to
zero at point S. If the geodesic line is locally a plane curve, so that τ1 is
equal to zero for a small area around point S, then (Weatherburn, 1995) the
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geodesic is also a line of curvature and parametric line (x = const. or y =
const. along the geodesic). In the case of y = const. the x-axis is tangent
to the geodesic, so it is an axis of principal direction with β = 0. The
equipotential surface is locally a surface of revolution and Wyz is equal to
zero, hence the same result for angle β is found from Eq. (2.28). There is a
possibility that the axis of revolution is the y-axis (x = const.). In this case
Wxz is equal to zero and angle β = π/2, therefore our (x.y) axes are again
principal directions.

Another possibility, when Wxy is equal to zero, is that the geodesics,
which are tangent to the x and y axes at point S, are not plane curves. In
this case again the aforementioned axes are principal directions but neither
Wxz nor Wyz is equal to zero. This case is not well described by Eq. (2.28).

If the second condition of Eq. (2.29) holds, for small variations along the
y-axis we have that:

Wz(B
′) = Wz(S) +WyzyB = Wz(S) = −gS . (2.33)

This means that either the equipotential surface is locally a surface of revolu-
tion – which was already discussed above – or the gravity field is symmetrical
but the shape of the equipotential surface around point S is cylindrical. The
cylindrical shape of the equipotential surface classifies point S as a parabolic
point (Grossman, 1976), therefore the sectional curvature at point S along
the y-axis is equal to zero. But since point S is a parabolic point, the value
of the sectional curvature along the y-axis has an extreme value, hence the
y-axis is a principal axis and the same holds for the x-axis, so that the angle
β is equal to zero.

The case that point S is singular is excluded, thus we do not study the
case when one of the parametric lines has a cusp at point S. Finally, the
case when β = π/4 remains to be examined.

From Euler’s theorem, we can determine the value of the sectional cur-
vature kn of the actual equipotential surface at point S as a function of the
angle a (a = 0 along the x1-axis), namely:

kn(S) = k1(S) sin
2 a+ k2(S) cos

2 a , (2.34)

where k1(S) and k2(S) are the principal curvatures at point S. Since β =
π/4, the angle a is also equal to π/4 (see Fig. 2) and from Eq. (2.34) we
conclude that:
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Fig. 2. Orientation of axes and relevant angles on the horizontal plane.

ky(S) = kx(S) =
1

2
(k1(S) + k2(S)) =

=−1

2

(
Wx1x1 +Wy1y1

g

)
S

= −1

2

(
Wxx +Wyy

g

)
S

, (2.35)

where kx and ky are the sectional curvatures along the x-axis and the y-
axis, respectively. The last equality of Eq. (2.35) holds because the sectional
curvature is equal to the mean curvature of the equipotential surface at point
S, which is an invariant quantity. But (Hofmann-Wellenhoff and Moritz,
2006):

kx(S) =−Wxx

gS
,

(2.36)

ky(S) =−Wyy

gS
.

Hence Wxx = Wyy and point S is an umbilical point. In this case all
directions are principal directions and the gravity field is locally spherically
symmetric so that Wxz = Wyz = Wxy = 0. This means that if point S
is an umbilical point – something which is extremely rare – the angle β is
undetermined.
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2.3. Refinement of the values of the Eötvös matrix components

From the transformation described in Eq. (2.24) we can express the inverse
transformation (from the (x, y) to the (x1, y1) system) and construct rela-
tions similar to Eq. (2.26) for the other surface derivatives, so we end up
with the following system of equations:

Wx1x1 cos
2 β +Wy1y1 sin

2 β = Wxx , (2.37)

and

Wx1x1 sin
2 β +Wy1y1 cos

2 β = Wyy , (2.38)

because, by definition:

Wx1y1 = 0 . (2.39)

Recalling our assumption for the estimate of Wyy (see Eq. 2.5)), we intro-
duce the temporary values W t

xx and W t
yy to the left-hand side of Eq. (2.37)

and Eq. (2.38), so that:

Wx1x1 = W t
xx , Wy1y1 = W t

yy . (2.40)

Hence, the solution is expressed as:

Wxx = W t
xx cos

2 β +W t
yy sin

2 β , (2.41)

and

Wyy = W t
xx sin

2 β +W t
yy cos

2 β . (2.42)

Further refinement of the value of Wxy is accomplished by Eq. (2.27), using
the new values of the Eötvös matrix components Wxx andWyy. If necessary,
one can repeat the whole procedure, from Eq. (2.10) onwards, in order to
obtain a better estimation of the Eötvös matrix components (as we did in
the numerical test that follows).

3. Numerical Test

In order to examine the performance of the proposed method, we made a
numerical simulation. We chose 12 arbitrary points on the Earth’s physical
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surface, described in Table 1 and Figure 3, and we computed the simulated
Eötvös matrix components and gravity values at those (S) and at nearby
points (A, B, C). The simulated values were computed using the EGM2008
zero-tide gravity model (Pavlis et al, 2012), at maximum degree and order
720. Then, we applied the proposed method to estimate the Eötvös matrix
components from the gravity values.

Table 1. The geodetic coordinates of the sites used in the numerical simulation.

Site ϕ0 (geodetic latitude [
�

]) λ0 (geodetic longitude [
�

]) h (geometric height [m])

1 57.20 357.70 131

2 50.40 355.90 94

3 43.30 359.60 247

4 37.30 354.00 56

5 43.45 11.90 310

6 52.20 4.50 43

7 57.00 9.90 42

8 49.90 11.60 460

9 40.60 23.60 346

10 47.80 21.70 155

11 55.20 30.20 157

12 45.00 39.00 30

Fig. 3. Map showing the distribution of the test points around Europe.
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In each case, the x, y coordinates of the three nearby points (A,B,C)
had randomly assigned values in the range [−5m, 5m], while the z coor-
dinates had random values in the range [0.5m, 2m]. For the computation
of the Eötvös matrix components, the model gravity values at all points
were accurate to 1 ngal (1 ngal = 10−11 m/sec2). Using these values, in Ta-
ble 2 below we summarize the statistics of the differences found between
the simulated (from the EGM2008 model) and the estimated Eötvös matrix
components, in Eötvös units, for the disturbing potential T .

Using exactly the same points but values of the gravity measurements
rounded-off to the nearest μgal (1μgal = 10−8 m/sec2), which today is a
realistic accuracy level, we obtained the statistics for the differences shown
in Table 3, again in Eötvös units.

4. Discussion and conclusions

In this work, we outlined a method for the estimation of the components
of the Eötvös matrix using local gravity measurements. We chose a point
on the Earth’s physical surface (point of interest), with known geometric
height, and three neighbouring points and obtained gravity measurements
at all points. We estimated the value of Wzz from the gravity measure-
ments and initial values of the surface derivatives Wxx and Wyy, using an
approximation for the curvature of the actual equipotential surface along
the East–West direction. The initial values of Wxx and Wyy were then used
for the estimation of Wxz and Wyz. They were also used to compute an ap-
proximate value of Wxy, using an estimate for the angle β of the principal
directions. Finally, the initial values of Wxx and Wyy, along with the angle
β, were used to compute refined values of Wxx and Wyy. The whole pro-
cedure was repeated, in order to further refine the values of the estimated
Eötvös matrix components.

The proposed method was tested by a numerical simulation, choosing
twelve points on the Earth’s physical surface, scattered over a wide area
in Europe, and simulating the gravity measurements and the Eötvös ma-
trix components using the EGM2008 gravity model (zero tide, degree and
order 720). We determined the statistics of the differences found between
the computed and the estimated components of the Eötvös matrix for two
different accuracy levels of the simulated gravity values. Despite the ap-
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Table 2. Statistics of the simulation results using gravity values accurate to 1 ngal.

Point ΔTxx ΔTxy ΔTxz ΔTyy ΔTyz ΔTzz

1 2.217 4.027 −0.0011 −2.217 0.0026 −0.0010

2 −1.626 −0.611 −0.0020 1.626 −0.0009 0.0002

3 0.196 −5.694 0.0008 −0.196 0.0002 −0.0023

4 −0.173 0.828 −0.0005 0.173 0.0007 −0.0013

5 2.295 0.885 0.0003 −2.295 0.0012 −0.0001

6 −0.411 2.299 −0.0006 0.411 0.0016 −0.0019

7 3.102 −3.487 0.0001 −3.102 0.0000 0.0034

8 1.114 −4.542 0.0005 −1.114 −0.0013 −0.0003

9 1.880 −0.837 0.0008 −1.880 −0.0017 −0.0015

10 4.251 2.000 −0.0010 −4.251 0.0009 0.0016

11 −0.580 2.012 0.0013 0.580 −0.0013 0.0022

12 4.058 −5.922 −0.0010 −4.058 0.0006 0.0028

Min. value −1.626 −5.923 −0.0020 −4.250 −0.0018 −0.0023

Max. value 4.250 4.027 0.0013 1.626 0.0026 0.0034

Mean value 1.36 −0.75 −0.0002 −1.36 0.0002 0.0001

Std. dev. 1.73 3.00 0.0010 1.73 0.0014 0.0018

Table 3. Statistics of the simulation results using gravity values accurate to 1μgal.

Point ΔTxx ΔTxy ΔTxz ΔTyy ΔTyz ΔTzz

1 3.530 4.602 −1.676 −0.977 1.245 −2.553

2 2.079 0.503 −1.760 2.758 −0.011 4.837

3 −0.813 −7.599 1.674 3.351 0.484 −2.538

4 −1.877 1.400 0.572 −0.956 0.183 2.833

5 3.014 5.192 1.011 −2.275 1.039 −0.739

6 2.614 1.131 0.382 1.063 0.189 −3.677

7 1.936 −3.105 −0.405 −4.541 −0.434 2.605

8 1.513 −4.568 0.118 −1.112 0.340 0.401

9 3.981 −0.068 0.837 −0.121 −0.360 −3.860

10 8.062 2.438 0.219 −4.130 0.521 −3.932

11 0.164 2.014 −1.755 −0.569 0.314 0.405

12 1.905 −6.439 −0.890 −3.704 0.686 1.799

Min. value −1.877 −7.599 −1.760 −4.541 −0.434 −4.837

Max. value 8.062 5.192 1.674 3.351 1.245 2.833

Mean value 2.18 −0.37 −0.14 0.93 0.35 −1.24

Std. dev. 2.53 3.73 1.14 2.37 0.49 2.55
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proximation made for the curvature of the actual equipotential surface, we
have shown that the gravimetric estimation of the components of the Eötvös
matrix is satisfactory. Using gravity values at the accuracy level of current
gravimeters, we estimated Wxy and the vertical gradient components of the
Eötvös matrix with an accuracy comparable to that obtained by torsion
balance instruments. It is to be noted that, in principle, the values of the
vertical gradient components Wxz, Wyz and Wzz were very accurate, while
the accuracy of the values of Wxx, Wyy and Wxy may be further improved,
through a better estimation of the curvature.
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