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Abstract: Hydromagnetic dynamos are numerically investigated at low Prandtl, Ekman

and magnetic Prandtl numbers using the PARODY dynamo code. In all the investigated

cases, the generated magnetic fields are dominantly-dipolar. Convection is small-scale

and columnar, while the magnetic field maintains its large-scale structure. In this study

the generated magnetic field never becomes weak in the polar regions, neither at large

magnetic Prandtl numbers (when the magnetic diffusion is weak), nor at low magnetic

Prandtl numbers (when the magnetic diffusion is strong), which is a completely different

situation to that observed in previous studies. As magnetic fields never become weak in

the polar regions, then the magnetic field is always regenerated in the tangent cylinder.

At both values of the magnetic Prandtl number, strong polar magnetic upwellings and

weaker equatorial upwellings are observed. An occurrence of polar magnetic upwellings is

coupled with a regenaration of magnetic fields inside the tangent cylinder and then with a

not weakened intensity of magnetic fields in the polar regions. These new results indicate

that inertia and viscosity are probably negligible at low Ekman numbers.
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1. Introduction

According to present knowledge, the Earth’s magnetic field is generated by
a self-sustained homogeneous dynamo operating in the liquid part of the
Earth’s iron core. The theory of hydromagnetic dynamo is able to describe
the origin, spatial and temporal evolution of the geomagnetic field and the
conditions, which must be satisfied for the dynamo’s action (Roberts and
Glatzmaier, 2000; Glatzmaier, 2005; Christensen and Wicht, 2007; Kaiser,
2009; Eltayeb and Rahman, 2013). In the Earth’s core, buoyancy is the
fundamental source of (magneto)convection and a hydromagnetic dynamo.
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The basic sources of buoyancy are the complicated processes going on in
the Earth’s fluid interior, for example, a thermal or/and chemical homoge-
nization, gravitational differentiation, solidification processes acting on the
inner core boundary, etc. (Jones, 2000; Trümper et al., 2012). The devel-
oped dynamo models are mostly based on thermal magnetoconvection for a
compressible or incompressible fluid and thermohaline magnetoconvection
(Roberts and Glatzmaier, 2000; Christensen and Wicht, 2007). It was as-
sumed that a dynamo could not be precessionally or tidally driven. These
models were linear, thus the kinetic energy of fluid motions strongly dissi-
pated in the boundary layers, leading to a malfunctioning dynamo. How-
ever, reflecting non-linear terms (the full 3D dynamo problem), numerical
simulations showed that precessionally driven dynamos do exist and can
provide dipole magnetic fields. Similarly, it appears that the tidally driven
flows do not markedly dissipate in the boundary layers. Thus, precession-
ally and tidally driven flows can be a source for a hydromagnetic dynamo
(Le Bars et al., 2011).

Since the first 3D self-consistent dynamo simulation performed by Glatz-
maier and Roberts, numerical modelling of self-consistent dynamos has
made noticeable progress in the last 20 years due to progress in computer
technology (Glatzmaier, 2005; Christensen and Wicht, 2007; Takahashi
et al., 2008; Sakuraba and Roberts, 2009; Christensen, 2011; Wicht and
Tilgner, 2010). Results of numerical simulations are very similar to the
observations of the recent geomagnetic field and to the palaeomagnetic re-
search (Roberts and Glatzmaier, 2000; Christensen and Wicht, 2007). How-
ever, many geodynamo models are mostly based on the thermal convection,
which provides sufficient and a good approximation of the real conditions in
the Earth’s fluid interior. Thus, the superadiabatic radial temperature gra-
dient between the core-mantle boundary (CMB) and the inner core bound-
ary (ICB) constitutes the main driving force of convection in most dynamo
models without the above mentioned complexities. Nevertheless, recent
geodynamo models could be based and many of them are already based
on thermochemical convection or convection, which is driven by the heat
flux from ICB. The current state of numerical dynamo modelling is de-
scribed very well in Christensen and Wicht (2007); Takahashi et al. (2008);
Takahashi and Shimizu (2012); Sakuraba and Roberts (2009); Christensen
(2011); Wicht and Tilgner (2010).

222



Contributions to Geophysics and Geodesy Vol. 46/3, 2016 (221–244)

Although the numerical results reproduce more and more detailed fea-
tures of the Earth’s magnetic field, which are provided by observations of
the recent geomagnetic field and by palaeomagnetic research (Aubert et al.,
2013), numerical simulations of the geomagnetic field are not able to run in
the Earth-like parameter regime because of the considerable spatial resolu-
tion that is required. Geodynamo models in the Earth-like parameter regime
are still a great challenge (Glatzmaier, 2005; Christensen and Wicht, 2007;
Sakuraba and Roberts, 2009; Wicht and Tilgner, 2010). Four basic param-
eters in this paper models are defined after the Eqs. (1)–(4), two Prandtl
numbers, Ekman and Rayleigh numbers, Pr, Pm, E, Ra, respectively. The
Prandtl number is the only parameter with a geophysical value that can be
directly used in dynamo models. For the outer core of the Earth the kine-
matic viscosity ν = 10−6 m2s−1, the thermal diffusivity κ = 5×10−6 m2s−1

and the magnetic diffusivity η = 2m2s−1 are expected (Roberts and Glatz-
maier, 2000; Fearn, 2007). In most numerical simulations scientists set
ν/κ = 1 (the ratio ν/κ is known as the Prandtl number).

When it is supposed that the geodynamo model is based on thermal con-
vection, then it is necessary to set ν/κ < 1 (Fearn, 2007), while when the
geodynamo model is based on chemical convection, then it is necessary to
use ν/κ > 1 (Christensen and Wicht, 2007; Pozzo et al., 2012). Thus, when
the geodynamo model is driven by the thermochemical convection or by the
heat flux from the ICB, then it is possible to set ν/κ = 1 (as used in many
geodynamo models). Christensen and Wicht (2007) estimated values of ν/κ
for the outer Earth’s core from interval 0.1 − 1. Let us remark that recent
estimations of the thermal diffusivity are from κ = 1.4 × 10−7 m2s−1 to
κ = 9.3× 10−6 m2s−1. This leads to ν/κ from interval 0.1− 7, which agrees
with values expected for thermally driven dynamos (ν/κ < 1) and for ther-
mochemically driven dynamos (ν/κ > 1). Some recent estimations of the
magnetic diffusivity are even η = 12m2s−1, which leads to ν/η = 10−5. This
is greater than 10−6 for η = 2m2s−1 (the ratio ν/η is known as the mag-
netic Prandtl number, Pm). Nevertheless, other recent estimations of the
magnetic diffusivity provide values of η ∼ 1m2s−1, which gives Pm = 10−6.
Recent estimations of the thermal and magnetic diffusivities are provided
in Pozzo et al. (2012) and Gomi et al. (2013). In this study ν/κ = 0.2.

Busse and Simitev (2005; 2011) and Simitev and Busse (2005) showed
that in the case of low Prandtl numbers, dominantly-dipolar dynamos oc-
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curred for larger values of Pm. Sreenivasan and Jones (2006a) showed that
dipolar dynamo breaks down for Pm = Pr = 0.2 because the inertia be-
comes important, and the magnetic field weakens considerably. There is
much more activity in the polar regions at Pr = 0.2 than at Pr = 1 and
as fluid motion becomes strong in the polar regions, the magnetic field gets
expelled out of polar regions. Mishra et al. (2013) concluded that at low
magnetic Prandtl number the decrease of magnetic energy, ohmic dissipa-
tion and power of the Lorentz force during a reversal is followed by an
increase of the power injected by the force driving the flow and an increase
of viscous dissipation. This supports results provided in Šimkanin (2015)
and Šimkanin and Hejda (2011; 2013) at low Pm. Šimkanin and Hejda
(2011; 2013) found that the magnetic field only becomes weak in the po-
lar regions at low Prandtl numbers and when inertia becomes important.
This is a basic condition for such a process. However, whether the mag-
netic field is weak in the polar regions or not also depends on the magnetic
Prandtl number. If the magnetic diffusion is small, then the phenomenon
of the magnetic field being weak in the polar regions, does not exist. If it
is large, it exists because the strong magnetic diffusion significantly weak-
ens the magnetic field inside the tangent cylinder. The magnetic diffusion
and inertia seem to act in the same direction in weakening the magnetic
field inside the tangent cylinder (Šimkanin and Hejda, 2011; 2013). This is
similar to the boundary-locked dynamo investigated in Sreenivasan (2009).
The thermal winds are balanced with the Coriolis force. Large lateral vari-
ations drive strong radial and axial fluid motions near the equatorial plane;
these flows in turn generate the helicity required for dynamo action. The
generated magnetic fields are preferred outside the tangent cylinder, as in
Šimkanin and Hejda (2011; 2013). For the locked dynamo in Sreenivasan
(2009) the force balance is the same as for the convection-driven dynamo
in Šimkanin and Hejda (2011; 2013).

In this paper hydromagnetic dynamos at the low Ekman number and
at low as well as at large magnetic Prandtl numbers are investigated. A
main problem is whether the magnetic diffusion and inertia act in the same
direction to weaken the magnetic field inside the tangent cylinder when the
viscosity is small and the magnetic diffusion is large, i.e. whether magnetic
fields become weak in the polar regions at Ekman and magnetic Prandtl
numbers lower than those used in Šimkanin and Hejda (2011; 2013). The
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model and governing equations are presented in Section 2, numerical results
are provided in Section 3 and Section 4 is devoted to discussing the results.

2. Governing equations and model

Here dynamo action that is due to thermal convection of an electrically
conducting incompressible fluid in the Boussinesq approximation, in an un-
stably stratified spherical shell (ri < r < ro) rotating with angular velocity
Ω is considered. The evolution of the magnetic field B, the velocity V and
the temperature T are described by the following system of dimensionless
equations:

∂B

∂t
= ∇× (V ×B) +

1

Pm
∇2B , (1)

E

(
∂V

∂t
+ (V · ∇)V −∇2V

)
+ 21z ×V +∇P =

= Ra
r

ro
T +

1

Pm
(∇×B)×B , (2)

∂T

∂t
+ (V · ∇)T =

1

Pr
∇2T , (3)

∇ ·V = 0 , ∇ ·B = 0 . (4)

The shell gap L = ro − ri is the typical length scale, which makes the di-
mensionless outer core radius ro = 1; the inner core radius ri is, similar to
that of the Earth, equal to 0.35. (r, θ, ϕ) isthe spherical system of coor-
dinates, 1z is the unit vector. Time, t, is measured in the unit of L2/ν,
velocity, V, in ν/L, magnetic induction, B, in (ρμηΩ)1/2, superadiabatic
temperature, T, in ΔT, and pressure, P , in ρν2/L2. The dimensionless pa-
rameters appearing in Eqs. (1)–(4) are the Prandtl number, Pr = ν/κ, the
magnetic Prandtl number, Pm = ν/η, the Ekman number, E = ν/ΩL2 and
the modified Rayleigh number Ra = αg0ΔTL/νΩ; where κ is the thermal
diffusivity, ν is the kinematic viscosity, μ is the magnetic permeability, η
is the magnetic diffusivity, ρ is the density, α is the coefficient of thermal
expansion, ΔT is the drop of temperature through the shell and g0 is the
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gravity acceleration at r = ro.
Eqs. (1)–(4) are closed by the non-penetrating and no-slip boundary

conditions for the velocity field at the rigid surfaces andfixed temperature
boundary conditions (the constant temperature Ti = 1 and To = 0 at the
inner and outer boundaries of the shell, respectively). The outer bound-
ary is electrically insulating (the magnetic field on this boundary matches
with the appropriate potential field in the exterior which implies no exter-
nal sources of the field), while the inner boundary is electrically conducting
(electric conductivity of the outer and inner core is considered to be the
same).

3. Numerical results

Eqs. (1)–(4) are solved using the PARODY dynamo code (Dormy, 1997;
Dormy et al., 1998; Aubert et al., 2008; Raynaud and Dormy, 2013). The
code solves the non-dimensional equations in Boussinesq approximation for
time-dependent thermal convection in a rotating spherical shell filled with
an electrically conducting fluid. PARODY is a semi-spectral code. It uses
spherical harmonics decomposition in the lateral and azimuthal directions
and a second-order finite differencing scheme in the radial direction, which
makes it suitable for parallel computation on distributed memory clusters
(Dormy, 1997; Dormy et al., 1998; Aubert et al., 2008; Raynaud and Dormy,
2013). As usual, toroidal-poloidal decomposition for velocity and magnetic
field is applied. The time integration uses the implicit second-order Crank-
Nicolson scheme. Parallelization is carried out using the message-passing
interface (MPI). To present the results, DMFI (Dynamical Magnetic Field
lines Imaging) visualization is used (Aubert et al., 2008). The DMFI algo-
rithm relies on 15 floating anchor points seeded inside the fluid shell. The
anchor points are not used as terminations of field lines. The field lines are
rendered as tubes with a thickness which is proportional to the local mag-
netic energy B2. Such a representation naturally depicts the most energetic
field lines in the fluid interior and, thus, assigns no visual impact to lines
which carry little magnetic energy (Aubert et al., 2008). The computations
were performed in the Jülich Supercomputing Centre on the Supercomputer
JUROPA and the visualizations on the NEMO cluster (SGI) at the Institute
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of Geophysics, Academy of Sciences of CR, Prague.
At Pr = 0.2 the characteristic viscous diffusion time is five times greater

than the characteristic thermal diffusion time (τν = 5τκ); which means
that thermal diffusion processes dominate over viscous ones. Computations
started from zero initial velocity and a strong dipole-dominated field with
B ∼ O(1), and were performed for Pr = 0.2. Pm = 0.1, 0.05 (Pmmin

� 0.01)
and Ra = 30000. Pmmin

is the minimal value of the magnetic Prandtl num-
ber at which dipolar dynamos exist. Christensen and Aubert (2006) showed
that the minimal value of the magnetic Prandtl number at which dipolar
dynamos exist varies with the Ekman number as Pmmin

� 450E3/4. This
relation was confirmed for Pr = 0.2 and Pm ≤ 1 in Šimkanin and Hejda
(2013). The ratio of the Rayleigh number, Ra, to the critical Rayleigh
number (the onset of convection), Rac , is 3.1. The spatial resolution was
set to 896 × 432 × 864 (Nr × Nθ × Nϕ), where Nr, Nθ, Nϕ are the num-
bers of grid points in the appropriate directions r, θ, ϕ, respectively. The
time integration was performed up to t = 3.5 (3.5 time units) for each run.
The spatial resolution is quite high, which leads to a small time step, as the
spatial resolution and the time step are bounded by the Courant-Friedrichs-
Lewy condition for a convergence of solution. Consequently, using these pa-
rameters, the time step has to be small, which makes computations pretty
time-consuming and then they were performed only up to t = 3.5. The
cases Pm < 0.01 were tested, too. However, for Pm < 0.01 and this value
of Ra no working dynamos have been found because the magnetic diffusion
is too strong to sustain any dynamo. This result confirms the findings of
Christensen and Aubert (2006). Thus, the relation between Pmmin and E is
also valid at E = 10−6 and Pr = 0.2. Let us briefly comment the efficiency of
numerical code and parallelization. Results displayed good convergence and
the PARODY code revealed an acceleration, when increase of the number of
processors in factor n caused increase of simulations in factor N > n because
of the more efficient use of the cash memory. This acceleration, speed-up
(S(P )), is defined as a ratio of computing time necessary for one proces-
sor, T (1), to computing time necessary for P processors, T (P ), namely
S(P ) = T (1)/T (P ). S(P ) increased with increase of P up to P = 1500,
when a plateau was obtained (fortunately, the value of P, for which S(P )
begins to decrease, has not been reached). Consequently, computations were
performed at P = 1500.
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Dependences of the mean kinetic energy, Ek, the mean magnetic energy,
Em, the ratio of the Rossby number at given Pm to the Rossby number at
Pm = 0.1, Ro(Pm)/Ro(Pm = 0.1), the magnetic Reynolds number, Rm, and
the ratio of the Rossby number to the Elsasser number, Ro/Λ, on the value of
the magnetic Prandtl number, Pm, at the Rayleigh number Ra = 30000 and
the Ekman number E = 10−6 are given in Table 1. The mean kinetic energy,
Ek, and the mean magnetic energy, Em, are defined similarly as in Chris-
tensen et al. (2001). Ro is defined as Ro = V/LΩ, Rm as Rm = PmRo/E
and Λ as Λ = B2/ρμηΩ. For the given value of Ra, the mean kinetic en-
ergy increases with the decrease of Pm, while the mean magnetic energy
increases with the increase of Pm, which is caused by stronger magnetic
diffusion for lower values of Pm. For the same reason the value of Rm at
Pm = 0.1 is greater than at Pm = 0.05. The values of Ro are comparable,
as they are not so different as for larger values of E (Šimkanin and Hejda,
2011; 2013). The ratio of the inertial force to the magnetic one (Ro/Λ) is
small and, in addition, smaller than for larger values of E (Šimkanin and
Hejda, 2011; 2013). This could indicate that at E = 10−6 and for these
parameters the inertia is negligible.

Let us look at magnetic fields and velocities structures. The typical spa-
tial distributions of radial magnetic field components, Br, at r = ro, are
presented in Fig. 1. Both panels are snapshots done at the time t = 3.5
(3.5 time units). The magnetic field is dipolar in both the investigated
cases but the equatorial symmetry is broken. At Pm = 0.1, the generated
magnetic field does not become weak in the polar regions (Pr = 0.2 but
Pm = 0.1 � Pmmin

). It is possible to observe fine structures of the magnetic
field (small scales are more visible) although the magnetic field maintains

Table 1. Dependences of the mean kinetic energy, Ek, the mean magnetic energy, Em,
the ratio of the Rossby number at given Pm to the Rossby number at Pm = 0.1,
Ro(Pm)/Ro(Pm = 0.1), the magnetic Reynolds number, Rm, and the ratio of the Rossby
number to the Elsasser number, Ro/Λ, on the value of the magnetic Prandtl number,
Pm, at the Rayleigh number Ra = 30000, the Prandtl number Pr = 0.2 and the Ekman
number E = 10−6.

Ra Pr Pm Ek Em
Ro(Pm)

Ro(Pm=0.1) Rm
Ro
Λ

30000 0.2 0.1 7.6× 106 4.8 × 107 1.00 390 5.7× 10−10

30000 0.2 0.05 8.5× 106 1.2 × 107 0.96 206 4.9 × 10−9
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Fig. 1. Spatial distributions (Hammer projections) of radial magnetic field components,
Br, at r = ro for the Rayleigh number Ra = 30000, the Ekman number E = 10−6, the
Prandtl number Pr = 0.2, the magnetic Prandtl number Pm = 0.1 (the top row) and 0.05
(the bottom row). Red (blue) colours indicate positive (negative) values. Minimal and
maximal values for the first row are (−27, 27) and for the second row (−19, 19). The
snapshots are at t = 3.5.
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its large-scale structure. This case is similar to the case of Pr = 1 in Taka-
hashi et al. (2008), so these results support theirs. Decreasing Pm to the
value of Pm = 0.05 gives a magnetic field, which also does not become weak
in the polar regions (similarly to at Pm = 0.1, see Fig. 1). The magnetic
energy is smaller than in the previous case of Pm = 0.1, and the magnetic
field weakens but the dynamo remains still dipolar (see Fig. 1). The mag-
netic diffusion is much stronger than at the previous value of Pm, because
Pm = 0.05 occurs close to the Pmmin

. The influence of inertial forces in this
case is similar to the previous case Pm = 0.1 (see Table 1). This leads to
a completely different behaviour at values Pm � Pmmin

than observed at
E = 10−5 and E = 10−4 in Šimkanin and Hejda (2013), and at E = 10−3

in Šimkanin and Hejda (2011). In previous cases the magnetic fields always
became weak in polar regions at Pr = 0.2 and for values Pm � Pmmin

. At
E = 10−6 it is not so (see Fig. 1).

As in Šimkanin and Hejda (2013), let us focus on the tangent cylinder.
Equatorial sections of the radial magnetic field components, Br, axisymmet-
rical meridional sections of the poloidal magnetic field components, BP , the
toroidal magnetic field components, BT , (at Pm = 0.1, 0.05) and equato-
rial sections of the the radial velocity field components, Vr, axisymmetrical
meridional sections of the poloidal velocity field components, VP , and of the
toroidal velocity field components, VT , (at Pm = 0.1, 0.05) are presented in
Fig. 2. All the panels are snapshots done at t = 3.5. The red (blue) colours
indicate positive (negative) values. At Pm = 0.1, the magnetic field raises
larger upwelling that creates in turn stronger magnetic fields inside the tan-
gent cylinder and this growth is weakly limited by magnetic diffusion (see
Fig. 2). This is the effect firstly described in Sreenivasan and Jones (2006b),
namely inside the tangent cylinder, in the region of the polar vortices, ther-
mal winds are strongly modified by magnetic winds due to Lorentz force.
Thus, the magnetic field is strong enough to initiate the polar magnetic up-
welling which stabilizes the stronger magnetic field in the polar region (see
Figs. 1–2). The magnetic upwelling as well as other structures described in
the framework of the DMFI is provided in the next paragraph. As shown
in Šimkanin and Hejda (2013), the absence of this effect is responsible for
the weak magnetic field in the polar regions at low Prandtl numbers. At
Pm = 0.05, the situation is the same as at Pm = 0.1, meaning that the
magnetic field is regenerated in the tangent cylinder at both Pm = 0.1 and
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Fig. 2. Equatorial sections of the radial components, axisymmetrical meridional sections
of the poloidal components and axisymmetrical meridional sections of the toroidal com-
ponents (from left to right) of the magnetic field, B, at the magnetic Prandtl number
Pm = 0.1, the magnetic field, B, at the magnetic Prandtl number Pm = 0.05, the ve-
locity field, V, at the magnetic Prandtl number Pm = 0.1 and the velocity field, V, at
the magnetic Prandtl number Pm = 0.05 (from top to bottom); for the Rayleigh number
Ra = 30000, the Ekman number E = 10−6 and the Prandtl number Pr = 0.2. Red (blue)
colours indicate positive (negative) values. Minimal and maximal values for the first row
are (−27, 27), (−22, 22), (−24, 24), for the second row (−19, 19), (−15, 15), (−9.96,
9.96), for the third row (−17, 17), (−12, 12), (−16, 16) and for fourth row (−18, 18),
(−13, 13), (−17, 17). The snapshots are at t = 3.5.
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Pm = 0.05, and it is strong enough to initiate the above mentioned effect of
Sreenivasan and Jones (2006b). Consequently, it does not become weak in
the polar regions even though the magnetic field is weaker than at Pm = 0.1
due to large magnetic diffusion (see Figs. 1–2). At Pm = 0.05 there is a little
larger upwelling compared to the case Pm = 0.1 (see Fig. 2), but it does
not constrain from a recovery of magnetic field inside the tangent cylinder.
Thus, inertial forces do not play such a significant role as at E ≥ 10−5

although Pr = 0.2 (̌Simkanin and Hejda, 2011; 2013).
The generated magnetic fields are large-scale at both values of Pm (0.1

and also 0.05, see Fig. 2). Nevertheless, it is possible to observe fine struc-
tures of the magnetic field; since at E = 10−6 small scales are more visible
than at E = 10−5 (see Šimkanin and Hejda, 2013), although the magnetic
field maintains its large-scale structure. Velocity fields are columnar and
small-scale at both values of Pm (see Fig. 2). The columnar character of
convection is maintained due to this value of Ra; since the Rayleigh number
is approximately three times greater than its critical value, while the small-
scale character of convection is given by the low value of the Ekman number.
At low Ekman numbers a small-scale columnar convection dominates, while
the magnetic field maintains its large-scale structure (see Figs. 2–3). Con-
sequently, as in Takahashi et al. (2008) the scales of the flow and magnetic
field are separated (see Fig. 3). The scale separation enables hydromagnetic
dynamos to maintain the magnetic field at low values of Pm. This explains
why Pmmin

decreases with decrease of E (Takahashi et al., 2008; Christensen
and Aubert, 2006; Schaeffer and Cardin, 2006).

In Fig. 2 some sheet-like flows are observed, providing support for the
results published in Takahashi and Shimizu (2012). It is not strange, be-
cause the sheet-like flows occur irrespective of boundary conditions and
driving mode of convection as long as the Ekman number is small enough,
while spatial distribution of convection seems to be sensitive to the thermal
boundary conditions, strength and morphology of the generated magnetic
field (Takahashi and Shimizu, 2012). However, this study does not observe
a formation of the meandering type d structure at E = 10−6, which con-
trasts with the findings of Takahashi and Shimizu (2012). The convection
structures in Takahashi and Shimizu (2012) are described in the next para-
graphs. This supports the results of Aubert et al. (2008) at the high value
of E and Šimkanin and Hejda (2013) at the same value of E as in Taka-
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Fig. 3. The mean-square magnetic field power spectrum (the top row) and the mean-
square velocity field power spectrum (the bottom row) as a function of harmonic degree
l in dependence on the magnetic Prandtl number, Pm, (Pm = 0.1 depicted by solid lines
and Pm = 0.05 depicted by dotted lines).
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hashi and Shimizu (2012), because a formation of the meandering type d
structure was also not observed in Aubert et al. (2008) and Šimkanin and
Hejda (2013).

The typical spatial distributions of the magnetic field, B, as well as other
structures related to DMFI are presented in Fig. 4. All the panels are snap-
shots done at t = 3.5. The left-hand panel provides the top (polar) view, the
right-hand panel the side view. The ICB and CMB boundaries are colour-
coded with the radial magnetic field, Br. The red (blue) colours indicate
outwards (inwards) oriented fields. The field lines are rendered as tubes
with a thickness that is proportional to the local magnetic energy B2. The
radial magnetic field as seen from the Earth’s surface is presented in the
upper-right inserts (for more details, see Aubert et al., 2008). In both the
investigated cases, Pm = 0.1 and Pm = 0.05, dynamos are dipolar and the
generated magnetic fields do not become weak in the polar regions, although
the magnetic field at Pm = 0.05 is weaker than at Pm = 0.1. At both values
of Pm it is possible to observe strong polar magnetic upwellings and weaker
equatorial magnetic upwellings (see Fig. 4). At Pm = 0.1 more equatorial
upwellings than at Pm = 0.05 are observed. Both cases in Fig. 4 (Pm = 0.1
and Pm = 0.05) illustrate how the poloidal component of magnetic field is
streched in the azimuthal direction and this process is well described by the
magnetic anticyclones. The magnetic anticyclones result from the magnetic
field’s interaction with axial flow anticyclones (Aubert et al., 2008). Strong
polar magnetic upwellings are equivalent to the large upwelling that may
create strong fields inside the tangent cylinder and then regenerates the
magnetic field inside the tangent cylinder (the effect described in Sreeni-
vasan and Jones, 2006b). Thus, an occurrence of strong polar magnetic
upwellings is coupled with a recovery of magnetic fields inside the tangent
cylinder, leading to the strong magnetic field in the polar regions, which
means that the magnetic field does not become weak in the polar regions
(see Figs. 1–4). Comparing Fig. 4 with the results in Šimkanin and Hejda
(2013), strong polar magnetic upwellings are now really equivalent to the
large upwelling that may create strong fields inside the tangent cylinder and
then regenerates the magnetic field inside the tangent cylinder (Sreenivasan
and Jones, 2006b), which leads to a strong magnetic field in the polar re-
gions, meaning that the magnetic field does not become weak in the polar
regions. However, in Šimkanin and Hejda (2013) at Pm = 0.1, no polar
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Fig. 4. The spatial distributions of magnetic field B for the Rayleigh number Ra = 30000,
the Ekman number E = 10−6, the Prandtl number Pr = 0.2, the magnetic Prandtl
number Pm = 0.1 (the top row) and 0.05 (the bottom row). The left-hand panels provide
the top (polar) view, the right-hand panels the side view. The ICB and CMB boundaries
are colour-coded with the radial magnetic field, Br. Red (blue) colours indicate outwards
(inwards) oriented field. The field lines are rendered as tubes with a thickness that is
proportional to the local magnetic energy B2. The radial magnetic field as seen from the
Earth’s surface is presented in the upper-right inserts. The snapshots are at t = 3.5.
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magnetic upwellings but only weak equatorial upwellings were observed.
Thus, the magnetic field is localized mostly outside the tangent cylinder
and is weak inside the tangent cylinder (here, it is not regenerated), which
leads to the weak magnetic field in the polar regions, so that the magnetic
field becomes weak in the polar regions. Now, it is possible to conclude
that an occurrence of polar magnetic upwellings is coupled with magnetic
fields inside the tangent cylinder and then with magnetic fields in the polar
regions (see Šimkanin and Hejda, 2013 and Fig. 4 in this paper).

At E = 10−6, the influence of inertial forces becomes weak and the mag-
netic diffusion and inertia do not act in the same direction to weaken the
magnetic field inside the tangent cylinder. The magnetic diffusion is a pre-
dominant factor at this value of E. Consequently, in contrast to the findings
of Šimkanin and Hejda (2011; 2013) the effects of inertia are noticeably vis-
ible at higher values of E. Thus, these results indicate that at low Ekman
numbers the effects of the viscosity and inertia are dynamically negligible
compared to the Lorentz, Coriolis and buoyancy forces.

4. Discussion

Numerical modelling of rotating convection and hydromagnetic dynamos
showed strong dependence on the Prandtl number and the magnetic Prandtl
number (Busse and Simitev, 2005; 2011; Simitev and Busse, 2005; Sreeni-
vasan and Jones, 2006a; 2006b; Brestenský et al., 1998; Šimkanin et al.,
2010; Šimkanin and Hejda, 2011; 2013). Results for E = 10−3, 10−4 and
10−5, presented in Šimkanin and Hejda (2011; 2013), provide the following
conclusions. Convection in the case of Pr = 0.2 is more supercritical than for
Pr = 1 at a given value of Ra (the critical Rayleigh number, Rac , decreases
with decrease of Pr). Dynamos always remain dipolar for these parameters.
Inertia becomes important (the Rossby numbers are large compared to the
case Pr = 1, when they are small), but its influence on the dynamo action
and magnetic field structures is regulated by the magnetic Prandtl number.
The phenomenon of the magnetic field being weak in the polar regions, is
observed primarily at small values of Pr (Sreenivasan and Jones, 2006b). It
is a basic condition but it is necessary to remark here that the weak geo-
magnetic field near the poles was also observed at Pr = 1 in Olson et al.
(1999) and Aubert (2005). However, whether the magnetic field is weak in
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the polar regions or not also depends on the magnetic Prandtl number. At
large values of Pm, the magnetic field raises larger upwelling that in turn
creates stronger magnetic fields inside the tangent cylinder. This growth is
weakly limited by magnetic diffusion and magnetic fields in the polar regions
do not become weak. The small magnetic diffusion eliminates the influence
of inertia on the magnetic field structures and dynamo action. This indi-
cates that the so-called MAC balance probably dominates, the inertia could
be negligible in the force balance, and does not influence the connection
between flow upwellings and magnetic field inside the tangent cylinder (a
magnetic influence dominates over inertial one). In this case Ro/Λ � 1 (see
Table 2). This is similar to the case when Pr = 1. Decreasing Pm weakens
the magnetic field inside the tangent cylinder, which leads to the magnetic
field becoming weak in the polar regions. For Pm � Pmmin

the magnetic
field significantly weakens (but remains dipolar) and it is significantly weak
in the polar regions because of an extremely weak magnetic field inside the
tangent cylinder. Here it is necessary to note that Aubert (2005) observed
hydromagnetic processes at Pr = 1, when magnetic fields were pushed out
of the tangent cylinder, which led to relatively weak magnetic flux in polar
regions. However, it was a case of non-dipolar dynamos in contrast to this
case of dipolar dynamos. For Pm � Pmmin

the inertia can influence the con-
nection between flow upwellings and the magnetic field inside the tangent
cylinder, but the magnetic diffusion influence remains the main factor in
theses processes. Nevertheless, the so-called MAC balance probably does
not dominate over the inertia (see Table 2), so that the influence of rotation,
viscosity and buoyancy could be more important. Soderlund et al. (2012)
and King and Buffett (2013) proposed the so-called VAC balance. Results
indicate that when magnetic fields in the polar regions become significantly
weak due to a magnetic field being extremely weak inside the tangent cylin-
der, then the VAC balance could be preferred to the MAC balance. This
is this case for E = 10−3, 10−4 and 10−5 (̌Simkanin and Hejda, 2011; 2013).
However, results provide only some indications because such conclusions re-
quire a detailed force balance analysis, which has been done in Soderlund
et al. (2012) and King and Buffett (2013) but it was not done in Šimkanin
and Hejda (2011; 2013). For Pm < Pmmin dynamos fail.

At E = 10−6 the situation is completely different compared to cases
E = 10−5, E = 10−4 in Šimkanin and Hejda (2013) and at E = 10−3 in
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Šimkanin and Hejda (2011). The magnetic field at E = 10−6 in both the
investigated cases (Pm = 0.1, 0.05) is dipolar and never becomes weak in
the polar regions, though Pr = 0.2. Neither at large values of Pm (the
magnetic diffusion is weak), nor at low values of Pm (the magnetic diffusion
is strong). The magnetic field is always regenerated in the tangent cylin-
der and it is strong enough to initiate the effect described in Sreenivasan
and Jones (2006b). Consequently, it does not become weak in the polar
regions even though the magnetic field is weak at values Pm � Pmmin

due
to large magnetic diffusion. Thus, the influence of inertial forces becomes
weak and the magnetic diffusion and inertia do not act in the same direc-
tion in weakening the magnetic field inside the tangent cylinder (see Table
2). Probably, magnetic diffusion is a predominant factor at this value of
E = 10−6. Then, Ro/Λ � 1 (see Table 2). Consequently, the effects of iner-
tia are noticeably visible at higher values of E, as was observed in Šimkanin
and Hejda (2011; 2013). At E = 10−6 results indicate that at low Ekman
numbers the inertia could be negligible, so that the so-called MAC balance
probably dominates and it is not influenced by the inertia. King and Buffett
(2013) showed that the so-called VAC balance proposed in Soderlund et al.
(2012) and King and Buffett (2013) is inappropriate at low Ekman numbers
and the so-called MAC balance is more appropriate because the influence of
Lorentz forces is paramount and the role of viscosity is no longer important.
As written before, these results provide only some indications because such
conclusions require a detailed force balance analysis, which is not done in
this study.

Table 2. Dependences of the ratio of the Rossby number to the Elsasser number, Ro/Λ,
on the value of the Ekman number, E, and the magnetic Prandtl number, Pm. Y/N
means if magnetic fields weaken in the polar regions (Yes/No).

E Pm Ro/Λ Magnetic fields weaken in the polar regions

10−3 3 2.4× 10−6 Y
10−4 1 6.9× 10−8 N
10−4 0.5 1.9× 10−7 Y
10−5 0.5 7.8× 10−9 N
10−5 0.1 9.3× 10−8 Y
10−6 0.1 5.7× 10−10 N
10−6 0.05 4.8× 10−9 N
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Aubert et al. (2008) defined magnetic upwellings (MU) as energetic field
lines generated within buoyancy-driven flow upwellings and they observed
them as the most remarkable structures highlighted by DMFI sequences.
The existence of MU has previously been suspected through the appear-
ance of tangent cylinder CMB flux patches closely related to helical flow
upwelling plumes (Sreenivasan and Jones, 2006b). A polar magnetic up-
welling is created by thermal and magnetic wind-driven plumes, which re-
side within the tangent cylinder. The converging flow beneath upwellings
concentrates the ICB magnetic flux patches into intense spots seeding the
magnetic field growth. Stretching and advection inside the upwellings subse-
quently amplify the magnetic field bundle which rises in the direction of the
rotation axis. Magnetic upwellings inside the tangent cylinder rise within
helical flow plumes which are not colinear but parallel to the rotation axis.
Equatorial magnetic upwellings are created close to the equatorial part of
the ICB, where the concentrated magnetic flux patches get near to the quasi-
geostrophic columnar flow upwellings residing outside the tangent cylinder.
The mechanism for their generation is largely the same as that of polar
magnetic upwellings. However, they are not associated with helical flow
plumes since the ambient vorticity field is not stretched by cylindrical radial
motion. Equatorial upwellings, therefore, lack the magnetic flux expulsion
mechanism seen with polar upwellings, and have little to no observable sig-
nature at the CMB. Results show that strong polar magnetic upwellings
are equivalent to the large upwelling that may create and then regenerate
strong fields inside the tangent cylinder as was described in Sreenivasan
and Jones (2006b). An effect described in Sreenivasan and Jones (2006b)
showed a connection between flow upwellings and magnetic field inside the
tangent cylinder. Strong magnetic fields seem to lead to larger upwelling
that may then in turn create stronger fields until this growth is limited by
diffusion. For low values of Pm, the magnetic field could be too weak to
initiate the effect and there would be little field created inside the tangent
cylinder (Sreenivasan and Jones, 2006b). At large values of Pm the mag-
netic diffusion is weak and strong polar magnetic upwellings are observed,
but equatorial magnetic upwellings are weaker than polar ones (see Fig. 4 in
this paper and Šimkanin and Hejda, 2013). Thus, strong polar magnetic up-
wellings occur together with a recovery of magnetic fields inside the tangent
cylinder, which leads to a strong magnetic field in the polar regions. The
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magnetic field does not become weak in the polar regions (see Fig. 4 in this
paper and Šimkanin and Hejda, 2013). At low values of Pm and E ≥ 10−5

the magnetic diffusion is strong and no polar magnetic upwellings are ob-
served, but rather only weak equatorial upwellings (Šimkanin and Hejda,
2013). The magnetic field is localized mostly outside the tangent cylinder
and is weak inside the tangent cylinder (here, it is not regenerated), which
leads to a weak magnetic field in the polar regions. Thus, the magnetic field
becomes weak in the polar regions (Šimkanin and Hejda, 2013). However,
at large and low values of Pm and Ekman numbers (E ≤ 10−6) strong polar
magnetic upwellings and equatorial magnetic upwellings are observed and
they are weaker than polar ones, which leads to a strong magnetic field in
the polar regions, so that the magnetic field does not become weak in the
polar regions.

Takahashi and Shimizu (2012) investigated the hydromagnetic dynamo,
which was driven by volumetric internal heating or secular cooling, at E =
10−5, Pr = 1, Pm = 2 and Ra = 3×107 (2.6 times the Rac). This dynamo is
characterized by the approximate magnetostrophic (MAC) balance, where
the effects of the viscosity and inertia are dynamically negligible compared
to the Lorentz, Coriolis and buoyancy forces. Their convection structures
are characterized by the co-existence of localized thin sheet-like plumes and
large-scale retrograde azimuthal flows. Such a mixed structure is a result of
the strong azimuthal magnetic field at low latitudes near the outer bound-
ary associated with a retrograde flows (type a). The mixed style of con-
vection generates a strong magnetic field with typical structures (Takahashi
and Shimizu, 2012). The type a and radial and axial fields in low to mid
latitude associated with the downwelling plumes (type b) accompany the
current loop structure, which is formed by stretching of the magnetic lines
along the direction of local magnetic field by acceleration of the flow. Axial
and azimuthal fields in mid latitude near the rim of the tangent cylinder
(type c) are formed by twist and stretch of the field lines by the shear
flow Takahashi and Shimizu (2012). The meandering type d is observed
temporally. It is made from the type a magnetic field and intense sheet
plumes. The main loop part of the structure is seemingly similar to that
associated with anti-cyclonic vortex (Aubert et al., 2008). On the other
hand, Aubert et al. (2008) investigated hydromagnetic dynamos at a much
higher value of E. They set E = 10−2. This study does not observe a
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formation of the meandering type d structure at E = 10−6, which con-
trasts with the findings of Takahashi and Shimizu (2012). This supports
the results of Aubert et al. (2008) at the high value of E and Šimkanin and
Hejda (2013) at the same value of E as in Takahashi and Shimizu (2012),
because a formation of the meandering type d structure was not observed
in Aubert et al. (2008) and Šimkanin and Hejda (2013), too. A different
driving force of convection may play a role. Takahashi and Shimizu (2012)
assumed the top forcing, while Aubert et al. (2008) employed bottom forc-
ing (the same as in this study). Since flows near the outer boundary tend
to be active compared with the deep part in the top forcing case, such flows
could generate the type d structure from the type a magnetic field near the
outer boundary. As the meandering type d structure is not observed and
the bottom forcing is employed, this study supports the results of Aubert
et al. (2008). However, some sheet-like flows are/were observed also in
this investigation, which supports the findings of Takahashi and Shimizu
(2012). This is not strange because the sheet-like flows occur irrespective of
boundary conditions and driving mode of convection as long as the Ekman
number is small enough, while spatial distribution of convection seems to
be sensitive to the thermal boundary conditions, strength and morphology
of the generated magnetic field Takahashi and Shimizu (2012). The small-
scale columnar convection dominates, while the magnetic field maintains
its large-scale structure. Scales of the flow and magnetic field are sepa-
rated (see Fig. 3), which enables hydromagnetic dynamos to maintain the
magnetic field at low values of Pm. Schaeffer and Cardin (2006) studied
a kinematic dynamo at very small Ekman and magnetic Prandtl numbers.
They supposed a 2D quasi-geostrophy model for the flow and 3D model for
the magnetic field, and concluded that a dynamo action could exist at low
Pm due to scale separation. The same conclusion is provided in Takahashi
and Shimizu (2012) for the 3D full dynamo. Brandenburg (2009) investi-
gated large-scale dynamos driven by helical forcing. He concluded that in
the absence of helicity, there is only small-scale dynamo action, which is
driven by the dynamics at the smallest possible scale, namely the resistive
scale.

The preliminary results of a study at E = 10−7 and Pr = 0.2 support
these conclusions. The occurrence of polar magnetic upwellings is associ-
ated with regeneration of magnetic fields inside the tangent cylinder and
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then probably with the intensity of magnetic fields in the polar regions.
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