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Abstract: Here we investigate the applicability of the harmonic inversion method to

time-lapse gravity changes observed in volcanic areas. We carry out our study on gravity

changes occured over the period of 2004–2005 during the unrest of the Central Volcanic

Complex on Tenerife, Canary Islands. The harmonic inversion method is unique in that

it calculates the solution of the form of compact homogeneous source bodies via the me-

diating 3-harmonic function called quasigravitation. The latter is defined in the whole

subsurface domain and it is a linear integral transformation of the surface gravity field.

At the beginning the seeds of the future source bodies are introduced: these are quasi-

spherical bodies located at the extrema of the quasigravitation (calculated from the input

gravity data) and their differential densities are free parameters preselected by the inter-

preter. In the following automatic iterative process the source bodies change their size

and shape according to the local values of quasigravitation (calculated in each iterative

step from the residual surface gravity field); the process stops when the residual surface

gravity field is sufficiently small. In the case of inverting temporal gravity changes, the

source bodies represent the volumetric domains of temporal mass-density changes. The

focus of the presented work is to investigate the dependence of the size and shape of the

found source bodies on their differential densities. We do not aim here (yet) at inter-

preting the found solutions in terms of volcanic processes associated with intruding or

rejuvenating magma and/or migrating volatiles.

Key words: volcano gravimetry, gravimetric interpretation, microgravity, temporal grav-
ity changes, gravity inversion

1. Introduction

The aim of this paper is to study the applicability of the harmonic inver-
sion method to interpreting temporal gravity changes occuring in restless
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or re-activating volcanic areas by investigating the changes of the subsur-
face density distribution which caused the gravity changes observed on the
surface. To meet this objective we use time-lapse gravity changes observed
over the period 2004–2005 during the unrest at the Central Volcanic Com-
plex (CVC) of Tenerife. As the relation between the gravity field and the
density distribution generating this field is a linear one (the Newton law),
the relation of the change of the gravity field and the change of the density
distribution is linear as well. Therefore it is possible to use the harmonic
inversion method, previously successfully applied to gravity, also to gravity
changes by simply replacing in all formulae the density by the temporal
density change and the gravity by the temporal gravity change.

For the gravity inversion we use the harmonic inversion method devel-
oped by the first author (Pohánka, 2001, 2003a). The method is called
harmonic because it is based on the very advantageous properties of n-
harmonic functions. Unlike the most of forward modeling methods (e.g.,
Brimich et al., 1996, 2011; Charco et al., 2002), which require an interac-
tive modification of the model parameters by the interpreter until a good fit
with input data on the earth surface is reached, direct inversion methods,
such as the one applied here, calculate the solution directly from the input
data and the interpreter specifies only the starting model.

The main difference between the usual inversion methods and the har-
monic inversion is in the number of parameters the values of which have
to be calculated: in the former case this number is usually small – smaller
than the number of the input gravity values (for example, if the solution is
sought in the form of a set of polyhedral anomalous bodies, these param-
eters are the coordinates of vertices of these bodies). On the contrary, by
the harmonic inversion the number of unknown parameters is huge – in any
case much greater than the number of the input values. This is because the
unknown parameters are the density values for each cubic cell into which the
calculation domain is divided; the known parameters are the values of the
input gravity interpolated onto a regular grid at the surface. The disparity
between the numbers of unknown and known parameters is the straight-
forward consequence of the difference between the 3-dimensional solution
(density distribution) and the 2-dimensional input (surface gravity).

As the harmonic inversion method is not yet developed for the case of
arbitrary form of the Earth (topographic) surface, we use here the variant
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of the method developed for the planar surface (a flat Earth approximation)
disregarding the topography. The negligence of topography can be reme-
died by applying topographic correction to the observed surface gravity data
and eventually by downward continuing the data from topographic surface
to sea level.

The harmonic inversion has already been applied to gravity data when
studying the crustal structure on a regional scale (Pohánka, 2001, 2003b). It
was used also in microgravimetric interpretation for archeological investiga-
tions when searching for unknown buried cavities such as chambers, tombs,
crypts (Pánisová et al., 2013). Here we apply the method to dealing with
gravity signals at the level of several tens of μGals (like in the near surface
microgravimetric studies), specifically to the time-lapse gravity changes ob-
served in volcanic areas during unrest or re-activation, while the spatial
dimensions of the study domain are in kilometers to tens of kilometers. As
will be shown below, the differential densities (volumetric density changes)
of the source bodies are to be selected beforehand (apriori) by the inter-
preter and for any such choice we obtain different final solution. The main
focus of this work is to study the variability of the solutions, namely the
sizes and shapes of the found anomalous bodies, depending on the selection
of the differential densities.

2. Harmonic inversion method

The inverse problem of gravimetry consists in finding the density distribu-
tion in the inversion domain (representing the interior of the Earth) from
the given gravity data at the boundary of the inversion domain (represent-
ing the surface of the Earth).

The inverse problem of gravimetry has infinitely many solutions and
thus it is ill-posed: there exist infinitely many density distributions (which
are nonzero in the inversion domain) that generate zero gravity field at the
boundary of the inversion domain. Therefore it is convenient to ask whether
there is some unique solution which is the simplest possible in certain sense.
Such a solution can be found if we represent the simplicity as smooth-
ness: this solution is certain n-harmonic function defined in the inverse
domain where n is a small positive integer. Recall that n-harmonic func-
tion f(x, y, z) satisfies the equation Δnf(x, y, z) = 0 (where Δ is the Laplace
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operator in the 3-dimensional space with coordinates x, y, z)(Pohánka 2001,
2003a). There is a unique solution which is harmonic (thus n = 1); however,
such a solution can have its extrema only at the boundary of the inversion
domain and thus cannot represent an anomalous body below the surface
of Earth. Therefore we shall require that the inversion procedure has to
satisfy the extremum preservation condition defined as follows: if the input
is the gravity field of a single point mass lying in the inversion domain, then
the solution should have its main local extremum exactly at this point. If
we add the requirement that the solution has to be expressed as a linear
integral transformation of the input gravity field, we can find an unique
solution ρ(x, y, z) for n = 4; this is called the characteristic density.

Such a solution is fully satisfactory from the purely mathematical point
of view; however, it is in no way a realistic solution because it is everywhere
very smooth and thus it cannot represent the real anomalous bodies where
the density has jumps at their boundaries. On the contrary, solutions which
are piecewise constant functions can be considered very well as realistic ones.
For any such solution there is a set of subdomains of the inversion domain
such that in each of these subdomains the solution is a constant function
(these subdomains represent anomalous bodies). The inversion procedure
should thus determine the number of such anomalous bodies and for each
body its density and shape; the principle of simplicity tells us that the num-
ber of the bodies should be as small as possible and the shapes of the bodies
should be as simple as possible – this could mean that the boundaries of
the bodies have to be maximally smooth. There remains the main question:
how to determine the shape of each of these bodies if our only information
is the gravity field at the boundary of the inversion domain?

The usual inversion procedures based on least squares methods have the
common drawback arising from the simple fact that they try to determine a
3-dimensional solution using directly the 2-dimensional input. On the other
hand, the harmonic inversion method is based on the very useful proper-
ties of the above described smooth (but unrealistic) solution: it uses this
solution as a tool for the determination of the realistic solution in the form
of a set of anomalous bodies with constant densities. It can be shown that
we even do not need to use the smooth solution of the inverse problem: we
can use any function which is sufficiently smooth and which satisfies the
above described extremum preservation condition. The current version of
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the method uses the 3-harmonic function called quasigravitation which is
not a solution of the inverse problem (in contrast to the previously used
characteristic density), but it has the property that for the input in the
form of a single point source it has its main extremum located exactly at
this point source and the value of this extremum is equal to the peak value
of the input gravity field.

In our calculation we used the planar surface version of the inversion
procedure where the Earth surface is defined by the condition z = 0 and
the inversion domain is the lower halfspace (z ≤ 0); the quasigravitation
q(x, y, z) is calculated from the surface gravitation g(x, y) (gravity acceler-
ation) by the formula:

z ≤ 0 : q(x, y, z) = 8

∫ ∞

0

u2z3

(u2+z2)5/2
∂u ḡ(x, y, u) du , (1)

where

ḡ(x, y, u) =
1

2π

∫ 2π

0
g(x+u cosϕ, y+u sinϕ) dϕ , (2)

is the mean value of the surface gravitation at the circle with radius u cen-
tered at the point (x, y).

The inversion procedure works as follows: first the starting model is cre-
ated, and then this model is iteratively changed until the surface gravity
field generated by the model describes the input gravity field sufficiently
well. The starting model is determined based on the quasigravitation calcu-
lated from the input gravity field: for each local extremum of this quasigrav-
itation there is introduced an initial anomalous body with approximately
spherical shape (any anomalous body consist of some number of small cubic
cells). The position of the center of the body is located at the position
of the extremum; the differential density of the body is preselected by the
interpreter – the only condition is that it has to have the same sign as the
sign of the extremum of quasigravitation. The radius of the initial spherical
body is again preselected by the interpreter – here the only condition is
that the maximum of the gravity field generated by the initial body should
be smaller (in absolute sense) than the extremum of the quasigravitation.

The following automatic iterative procedure does not change the densi-
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ties of the anomalous bodies; it changes only the shapes and sizes of the
bodies. In other words, it shifts the boundary of each body at each bound-
ary cell inwards or outwards. This is done as follows: in each iterative step,
the surface gravity field of the density model (created in the previous iter-
ative step) is calculated and this field is subtracted from the input gravity
field producing a residual gravity field. From this residual field it is then
calculated the (residual) quasigravitation; on the contrary to the case of the
starting model, this needs not to be done in the whole inversion domain,
but only at the cells belonging to the boundaries of the anomalous bodies.
Then the boundary of each body is shifted at each boundary cell inwards or
outwards according to the sign of the residual quasigravitation at this cell:
if this sign is the same as the sign of the differential density of this body, the
boundary is shifted outwards (increasing the volume of the body), otherwise
the boundary is shifted inwards (decreasing the volume of the body). Of
course, this does not mean that the cell itself is somehow shifted: the shift-
ing of the boundary means that the density of the corresponding boundary
cell is changed from the original value to the value of the neigbouring cell
on the other side of the boundary. Thus, there can never happen that some
cell acquires the density other than those of the existing cells.

The changing the density of the boundary cells is controlled by a set
of parameters which determine the so-called limiting value of quasigravita-
tion: the cell can change its density only if the actual value of the (residual)
quasigravitation at this cell is (absolutely) greater than this limiting value.
The limiting value is slowly decreasing with each iteration step and (in each
step) it is increasing with the depth. These parameters are set by the inter-
preter at the beginning of the iterative procedure and their correct choice
may substantially improve the shape of resulting anomalous bodies (in the
sense of greater regularity of their boundaries).

The iteration procedure should run in ideal case until the residual surface
gravity field is smaller (in absolute sense) than some given limit; however,
actually the procedure runs for some preselected number of iterative steps
and the model is saved always after 8 consecutive steps. In this respect it
is interesting that in the actual calculations there happens only rarely that
the shapes of the anomalous bodies remain unchanged starting from some
iteration step (which means that the calculation is in fact finished). In the
most cases the shapes of the anomalous bodies change with each iteration
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step although the residual surface gravity decreases only very slowly (and
in some cases it can even slowly increase). Often it can happen that the
boundaries of the anomalous bodies become fuzzy starting from some it-
erative step; for an incorrect choice of the parameters mentioned above it
can happen that the solution starts to oscillate (the bodies grow in one step
and shrink in the next one). Therefore the final solution is not taken from
the last iterative step, but from the (saved) iterative step with the lowest
absolute values of the residual surface gravity.

It has to be noted that in the original version of the harmonic inversion
procedure each initial anomalous body consisted from a single cell. This
had the disadvantage that the shape of the resulting anomalous bodies was
in many cases distorted (prolonged in the direction away from the surface).
Such a behaviour is the consequence of the mathematical properties of the
n-harmonic functions which cannot be removed by some other choice of the
form of quasigravitation. However, this deformation can be practically re-
moved by creating the initial anomalous bodies in the form of sphere if the
volume (and thus also the mass) of the sphere is comparable to the volume
of the resulting body (note that this volume can be roughly determined
from the value of quasigravitation at the corresponding extremum).

The current versions of the harmonic inversion procedure are developed
for the inversion domain of the shape of a sphere or a halfspace, with the
boundary of the inversion domain (representing the earth surface) as either
the surface of a sphere or a plane. This restriction arises from the fact that
the calculation of the quasigravitation is relatively simple in these two cases
and it becomes very difficult if the boundary of the inversion domain is an
arbitrary (albeit smooth) surface.

3. Gravity changes of the 2004/5 Teide (Tenerife) volcanic
unrest

The central volcanic complex (CVC) on Tenerife (Fig. 1), Canary Islands,
comprised of the Las Cañadas caldera and the twin strato-volcanoes Pico
Viejo (PV) and Teide (T), experienced in 2004–2005 a seismo-volcanic
unrest. Among other unrest indicators, spatio-temporal gravity changes
were observed at the CVC on 14 benchmarks of a rapid reaction network
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(Gottsmann et al., 2006). No statistically significant areal surface deforma-
tion (either inflation or deflation) was observed accompanying these gravity
changes. The observed gravity changes were corrected for tidal and hydro-
logical effects (ibid). These point gravity data were taken as input data in
our study (depicted by cross marks in Fig. 2). They were interpolated and
extrapolated onto a regular grid in the area 60 × 60 km with the step 200
m (90601 gravity values).

We applied an interpolation method developed by the first author
(Pohánka, 2005). This interpolation method belongs to the class of moving
average methods. The interpolated value at any given point is calculated
using the input values at all measurement points; each of the latter val-
ues contributes according to the weight of the measurement point (with
respect to the calculation point) which is a strongly decreasing function
of the distance of these two points. First a polynomial of the second or-
der is determined (by the least squares method), which approximates best
the measurement point values in the neighborhood of the calculation point;
then the interpolated value is simply taken as the value of this polynomial
at the calculation point (in other words, from the 6 coefficients determin-
ing the polynomial, just one is used). This procedure assures the maximal
smoothness of the resulting interpolated function. The interpolated gravity
changes are shown in Fig. 2.

Fig. 1. Location of our test study: (a) Canary islands and Tenerife, (b) the CVC with
twin volcanoes.
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Fig. 2. Temporal gravity changes of the 2004/5 Tenerife unrest interpolated onto a regular
grid. The positions of measuring stations are depicted by black cross marks.

4. Harmonic inversion solutions

The quasigravitation for the 2004/5 CVC Tenerife volcanic unrest was com-
puted from the interpolated gravity change values in the rectangular domain
with horizontal dimensions 40×40 km and maximum depth 12 km; the step
in all dimensions was 200 m (the domain contains 2424060 cubic cells). The
result is shown in Fig. 3 in terms of two horizontal sections.

Altogether 11 local extrema of quasigravitation were found: 7 with pos-
itive and 4 with negative values. The positions of these local extrema and
the corresponding extremal quasigravitation values are listed in Table 1
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Fig. 3. Quasigravitation: horizontal section at depth of 0.8 km b.s.l. (a) and at depth
of 5.8 km b.s.l. (b). Horizontal coordinates are relative to a centre at x0 = 336980 m
(UTM easting), y0 = 3128520 m (UTM northing). Blue depicts positive values while red
negative values.

Table 1. The local extrema of quasigravitation (as numbered in the first column): x and
y are UTM easting and northing, z is height above sea level, q is the value of quasigravi-
tation at the extremum and m∗ is the mass equivalent of the quasigravitation extremum
(as if the extremum represented a point mass). The last two columns are indicative of
the contribution of the extremum to the overall field. For plan view of the locations of
the extrema see Fig. 4.

extremum x (UTM) y (UTM) z m∗ q

[m] [m] [m] [109 kg] [μGal]

1 332980 3120720 −1200 83.208 54.225

2 335180 3132720 −5800 418.300 45.881

3 329180 3137720 −800 45.838 39.016

4 344380 3126120 −1800 52.351 24.193

5 344780 3136320 −600 23.824 23.518

6 331380 3136120 −600 12.211 12.054

7 326780 3138120 +200 5.512 11.352

8 327180 3133920 −1000 −34.371 −25.485

9 338380 3119120 −800 −22.267 −18.953

10 334180 3140920 −4600 −94.114 −14.418

11 345780 3131720 −1000 −18.355 −13.609
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and portrayed in Fig. 4. Therefore the starting model consisted of 11 initial
anomalous bodies: 7 with the positive and 4 with the negative differential
density changes. As for the differential densities attributed to these bod-
ies, there were 7 solution variants considered, with different values of these
differential densities, ranging from 1 to 16 kg/m3 for the positive ones and
from −1 to −8 kg/m3 for the negative ones. These solutions resulting from
the iterative calculation are portrayed in Figs 5 to 11 and their parameters
are listed in Tables 2 to 4 (for the solutions from Figs 5, 6 and 11) further
below. For simplicity (and clarity of the depictions) the bodies with nega-
tive differential density are not shown in Figs 5 to 11.

Fig. 4. Plan view of locations of the local extrema of the quasigravitation, see Table 1 for
coordinates and values.
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Table 2. Parameters of the source bodies of solution A shown in Fig. 5: δρ is differential
density of the body, x and y are UTM easting and northing, z is height above sea level (of
the center of the initial body seed), the next column lists the number of cells forming the
body (which defines the volume of the body), m is the mass (time-lapse mass change) of
the body and g is the amplitude (of the time-lapse change) of the surface gravity above
the body. The last two columns are indicative of the contribution of the source body to
the overall field. Notice that bodies grown from seeds 3, 6, and 7 (marked by ∗) merged
in this solution into one body the parameters of which we list under body no. 3.

body δρ x (UTM) y (UTM) z number m g

[kg/m3] [m] [m] [m] of cells [109kg] [μGal]

1 +1 332980 3120720 −1200 11621 92.968 55.866

2 +1 335180 3132720 −5800 39229 313.832 43.569

3 +1 329180 3137720 −800 ∗ 7906 ∗ 63.248 ∗ 41.532

4 +1 344380 3126120 −1800 7469 59.752 24.570

5 +1 344780 3136320 −600 3492 27.936 23.911

6 +1 331380 3136120 −600 ∗ ∗ ∗
7 +1 326780 3138120 +200 ∗ ∗ ∗
8 −1 327180 3133920 −1000 4131 −33.048 −24.016

9 −1 338380 3119120 −800 4657 −37.256 −19.413

10 −1 334180 3140320 −4600 16107 −128.856 −15.197

11 −1 345780 3131720 −1000 6645 −53.160 −16.207

In Table 5 we list for each solution the number of iterations necessary for
the calculation of the solution (the final solution is taken from the iteration
with the smallest residual surface gravity) and the extremal values and rms
of the residual surface gravity.

5. Discussion

As declared in the Introduction, our objective was to investigate the variabil-
ity of the sizes and shapes of the source bodies (depending on the selection
of their differential densities) obtained by the harmonic inversion from the
time-lapse gravity changes observed in volcanic areas. We performed this
analysis on temporal gravity changes accompanying the 2004–2005 unrest at
the Central Volcanic Complex of Tenerife, Canary Islands. Here we do not
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Table 3. Parameters of the source bodies of solution B shown in Fig. 6: δρ is differential
density of the body, x and y are UTM easting and northing, z is height above sea level (of
the center of the initial body seed), the next column lists the number of cells forming the
body (which defines the volume of the body), m is the mass (time-lapse mass change) of
the body and g is the amplitude (of the time-lapse change) of the surface gravity above
the body. The last two columns are indicative of the contribution of the source body to
the overall field.

body δρ x (UTM) y (UTM) z number m g

[kg/m3] [m] [m] [m] of cells [109kg] [μGal]

1 +2 332980 3120720 −1200 5610 89.760 55.510

2 +1 335180 3132720 −5800 42088 336.704 44.674

3 +2 329180 3137720 −800 2347 37.552 33.342

4 +1 344380 3126120 −1800 6922 55.376 23.656

5 +1 344780 3136320 −600 3318 26.544 23.264

6 +1 331380 3136120 −600 2565 20.520 16.473

7 +1 326780 3138120 +200 843 6.744 12.905

8 −1 327180 3133920 −1000 4359 −34.872 −24.400

9 −1 338380 3119120 −800 6747 −53.976 −19.872

10 −1 334180 3140920 −4600 16901 −135.208 −15.765

11 −1 345780 3131720 −1000 6272 −50.176 −16.547

attempt to interpret the found solutions in terms of physical (volcanic) pro-
cesses associated with magma and volatiles migration during volcanic unrest
or reactivation. That is left for the next stage and future case studies em-
ploying constraints from other earth science disciplines and incorporating
expertise of volcanologists.

In general, we can observe that for higher differential density values the
source bodies grow from their initial quasi-spherical shape only slightly (or
not at all), while retaining their shape. On the contrary, for smaller differen-
tial density values the bodies tend to grow more and acquire more complex
shapes, sometimes displaying tentacles that may even mediate connections
among the individual bodies (see e.g. Fig. 5), or the bodies may form con-
tacts among each other. This feature – the tentacles – seems very intriguing.
We have yet to determine whether the tentacles are an artefact – either of
the iterative process (of the inversion procedure) or of the interpolation –
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Table 4. Parameters of the source bodies of solution G shown in Fig. 11: δρ is differential
density of the body, x and y are UTM easting and northing, z is height above sea level (of
the center of the initial body seed), the next column lists the number of cells forming the
body (which defines the volume of the body), m is the mass (time-lapse mass change) of
the body and g is the amplitude (of the time-lapse change) of the surface gravity above
the body. The last two columns are indicative of the contribution of the source body to
the overall field.

body δρ x (UTM) y (UTM) z number m g

[kg/m3] [m] [m] [m] of cells [109kg] [μGal]

1 +16 332980 3120720 −1200 689 88.192 61.425

2 +6 335180 3132720 −5800 8200 393.600 44.589

3 +14 329180 3137720 −800 417 46.704 40.971

4 +6 344380 3126120 −1800 951 45.648 21.754

5 +9 344780 3136320 −600 257 18.504 19.756

6 +5 331380 3136120 −600 324 12.960 13.178

7 +6 326780 3138120 +200 92 4.416 10.027

8 −8 327180 3133920 −1000 443 −28.352 −22.524

9 −6 338380 3119120 −800 443 −21.264 −19.495

10 −2 334180 3140120 −4600 14972 −239.552 −18.532

11 −4 345780 3131720 −1000 597 −19.104 −14.850

Table 5. Goodness of fit for the particular solutions (listed in the first column): number
of iterations necessary for the calculation of the solution and the extremal values and
rms of the residual surface gravity (i.e. the difference of the input gravity and calculated
gravity; thus it is equal to negative misfit).

solution number of min g max g rms g

iterations [μGal] [μGal] [μGal]

A 112 −3.079 1.260 0.538

B 136 −3.948 1.501 0.637

C 88 −4.332 1.844 0.820

D 8 −8.669 0.942 1.796

E 8 −10.716 2.143 1.908

F 208 −3.274 8.069 0.695

G 208 −4.659 8.688 1.003
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Pohánka V., Vajda P., Pánisová J.: On inverting gravity changes . . . (111–134)

or if they are realistic and indicate pathways of higher permeability for hy-
drothermal fluids or weakened zones yielding to diking or magma migration.
The mass or gravity effect of the tentacles is smaller than those of the bod-
ies, which could make us inclined towards the view that these tentacles are
insignificant and hence artificial. On the other hand, they seem to mediate
pathways among the bodies that appear meaningful. Moreover, one of the
tentacles creeps towards the close vicinity of the Pico Viejo summit crater.
Anyhow, the story of the presence of these tentacles is left for future inves-
tigations in terms of case studies where constraints from other geoscientific
disciplines may help to resolve this issue.

The solutions with source bodies of smaller differential densities and
more complex shapes manage to reach a better fit to the input gravity data
than those with bodies of higher differential densities and smaller sizes with
more spherical shapes (cf. Table 5). On the other hand, the bodies of such
small differential density as 1 kg/m3 might be unrealistically overgrown
compared to real volcanic causes. How to approach their interpretation
from this point of view shall be also the topic of future studies. One op-
tion is to view them as volumetric zones delineating the possible presence
of magmatic/hydrothermal sources of higher differential densities and lesser
dimensions discretely distributed within the zones (such as dike/sill swarms
or magma patches). Additional studies are needed to handle this issue.

6. Conclusions

We studied here for the first time the performance of the harmonic inversion
method when applied to time-lapse gravity changes in volcanic areas. This
study, carried out on gravity changes observed during the 2004/5 volcanic
unrest on Tenerife, was devoted to analyzing the variability of solutions
with respect to the choice of free parameters of the methodology, first of
all, the differential densities (temporal density changes) of the source bodies
(volumetric domains of homogeneous density changes). We obtained several
solutions for various combinations of the differential density values assigned
to the individual source bodies and observed that the sizes of the bodies
are in the inverse proportion to their differential densities (what can be
expected theoretically). The variability of the solutions is the consequence
of the non-uniqueness of the gravimetric inverse problem.
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This case study gave us important experience with respect to the correct
choice of several free parameters needed to initiate the iterative procedure
(foremost the differential densities and radii of the seeds of the source bod-
ies) and the method itself could be improved (see the end of chapter Har-
monic inversion method).

In potential field inverse problems we often deal with composite signals
while the decomposition into multiple sources inherently remains an am-
biguous task. Due to the non-uniqueness of the inverse gravimetric problem
also the solutions found by our harmonic inversion are again amongst many
admissible solutions. Additional constraints from other earth science disci-
plines are required to validate physical (geologic, volcanologic) feasibility of
any such solution. However, it is of great advantage when gravimetry alone
provides several sets of admissible solutions that later on may be discrimi-
nated using available geologic or geoscientific constraints in the search for
the most probable realistic scenario.

The case study based on the 2004/5 time-lapse gravity changes of the
CVC on Tenerife indicates that the harmonic inversion methodology ap-
pears promising for inverting and interpreting gravity changes observed in
volcanic areas during unrest or reactivation. In the follow-up work we shall
attempt to assign volcanological interpretation to the source bodies pre-
sented here. Additional case studies, in general, are needed to establish the
link between the solutions obtained by the harmonic inversion method and
their physical interpretation in terms of processes taking place inside the
volcano edifice or deeper below.
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