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Abstract: The elements of the E6tvos matrix, usually determined by torsion balance
measurements, are useful in many geodetic applications. We present a method for the
computation of the elements of the normal E6tvos matrix at a point on the Earth’s physical
surface, resulting in an improvement in the determination of the deflection of the vertical
at intermediate points of a network. In the process, we also present analytical expressions
for the computation of the components of the deflection of the vertical. From those
expressions and using also a numerical example, we show that the proposed refinement is
not completely negligible.
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1. Introduction

The Eo6tvos matrix is the second order derivative of the Earth’s gravity
potential at a point P. The Earth’s gravity potential is expressed in a
local Cartesian system (z,y,z). This system is centred at point P (point
of measurement), the z-axis is perpendicular to the equipotential surface
passing through point P pointing outwards, the z-axis is tangent to the
equipotential surface passing through point P pointing North and the y-
axis is tangent to the aforementioned equipotential surface pointing East.
Using the letter “W” for the Earth’s gravity potential, then its second order
derivative at point P expressed in this local Cartesian system is equal to:

Wiz Wa:y W
E(P)= | Wy, Wy, Wy. | . (1.1)

sz Wzy sz P
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The elements of the E6tvos matrix (except W) are determined by tor-
sion balance measurements at point P. The Eo6tvios matrix is significant
because, for example, it plays an important role for the “Geodetic Singular-
ity Problem”: if the determinant of the E6tvos matrix at point P is equal to
zero, then it is rank deficient and this classifies point P as a singular point.
This means that it is not possible to replace (pseudo)differentials of un-
holonomic coordinate systems, which are related to moving local astronom-
ical frames, with differentials of holonomic coordinate systems (Livieratos,
1976). Another application of the E6tvos matrix is the determination of the
deflection of the vertical at points on the Earth’s physical surface (Vélgyest,
1993, 1998). The elements of the E6tvos matrix which are involved are W,
Wy and Wy,. A third application of the E6tvos matrix is the determina-
tion of the geoid undulation by an alternative solution for the astrogeodetic
levelling (Vélgyesi, 2001). Finally, the determination of gravity anomaly is
possible (for gravimetric determination of the geoid) with the help of the
elements W, and W,..

In this work we will describe briefly the method for the determination
of the deflection of the vertical with torsion balance measurements. The
necessary equations of this method include the diagonal elements W, and
Wy, of the E6tvos matrix and also the diagonal elements U, and Uy, of
the normal E6tvos matrix at point P (the letter “U” is used for the normal
gravity potential generated by an equipotential ellipsoid of revolution — the
reference ellipsoid). Until now, the values of the elements Uy, and U,, have
been determined on the surface of a chosen ellipsoid of revolution. Here
we will present a method for their determination on the Earth’s physical
surface.

2. Determination of deflections of the vertical with torsion
balance measurements

There is a set of points Py, Ps, P, ..., P,_o, P,,_1, P, on the Earth’s physical
surface covering a relative small area (see Fig. 1). At points P; and P, the
deflection of the vertical is known. Torsion balance measurements have been
performed at all points. For the triangle P, P, P; we have three equations
(Vilgyesi, 1993):
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Pn-l
Pz P4
P,
P3 Py Pho
Py
Fig. 1. Torsion balance and gravity measurements network.
Ao sin g — Anpoq cos agg =
S .
=2 {(Wyy —Uyy + Way — Upa)|  sin2aig +
4g12 P 2.1)
+ (Wyy - Uyy + Wae — sz) Py sin 2ar19 +
+ (Way — ny)lpl cos2aq2 + (Wyy — U;,gy)’P2 cos 2a12] ,
A&3o sin agz — Ansa cos gz =
S .
= 22 {(Wyy - Uyy + Wae — Umx) sin 2ai03 +
4923 P (22)
+ (Wyy - Uyy + Wy — Ua:a:) P, sin 2aio3 +
+ (Way — ny)‘Pz cos 2a3 + (Wyy — U;,gy)‘P3 cos 2(123] ,
A&s31 sin a3 — Ansp cos agz =
S13 .
= dagia [(Wyy —Uyy + Way — Upa)|  sin2ai3 +
913 Py (2.3)
+ (Wyy - Uyy + Wy — Ua:a:) P sin 2ai13 +
3
+ (Way — ny)’PI cos 2aq3 + (Wyy — U;,gy)’P3 cos 2a13] ,
where
Afor =& — &, (2.4)
A =m —n2. (2.5)
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Similar relations hold for A&sy, Aéz1, Anse and Anz;. Also, aja, ag3 and
aq3 are the azimuths of P; Py, P, P3 and P P3, while S5, Sog and S43 are the
lengths of Pi P, PP and P; P3 respectively, and g;; is an average gravity
value between P; and P;. The local Cartesian system (z,y, z) is centred at
point P;. Additional relations for the triangle P, P> P3 are:

Ao + Abza + A3 =0, (2.6)
Anoy + Anza + Amz = 0. (2.7)

For the triangle P; P, P; we have six unknowns which are A&sy, Aéso,
A&z, Ang1, Ansa, and Anyg. Therefore for the n—2 triangles (see Fig. 1) we
have 4n — 6 unknowns and 4n — 7 equations. We need one more equation to
find the unknowns, and we can choose one from the following two equations:

Z A1, =& — &1, (2.8)
=2

or

S A1 =1 — . (2.9)
=2

3. Improving the elements of the E6tvos matrix

The second order partial derivatives of the normal potential U, and Uy,
which are involved in the equations (2.1), (2.2), and (2.3) have approximate
values, i.e. they are determined on the surface of the chosen reference ellip-
soid of revolution and not on the Earth’s physical surface. The points
of interest Py, P>, Ps, ..., P,_o, P,_1, P,, are projected on the ellipsoid along
the ellipsoidal normals passing through these points. Let the projection
points be Q1, Q2, ..., @, and (i, Yi, 2Qi) the corresponding local Cartesian
systems which are defined on the aforementioned projection points. The
value of the components of the normal E6tvos matrix at points Py, Py, ..., Py,
is given by Toth et al. (2001):
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Uyy = Uzz = Uyqiyqs = Uzgizgi = (3.1)
1 1 3.1

in Eotvos units (1E = 107%sec™2). The symbol “y” stands for the normal
gravity on the ellipsoid while M and N are its principal radii of curvature.
For the above equation we made the assumption that:

Uyy = Usa = YQiyQi UinﬂfQi : (3.1a)
In addition, the second assumption for equation (3.1) is:

Ugy = Uy 0. (3.1b)

QivYQi —

As we mentioned before, (xq:,yqi,2q:) are the local Cartesian systems
at points Q1, Qo2, ..., Q,. We define a second local Cartesian system at each
point on the Earth’s physical surface by the following relation:

T4 0 1 0 0 in
yii| =1 0 |+ |0 cosd; sind;| |yg, |, i=1,2,...,n, (3.2)
215 —hp 0 —sind; cosd; 20,

where (z1;, y1i, 214), @ = 1,2, ...,n are the related local Cartesian systems at
points Py, P>, Ps, ..., P,_o, P,_1, P, and hp; is the geometric height of point
P; (Fig. 2).

X

X
y
\ z
Q

Fig. 2. Coordinate systems at points Q; and P;.
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From the above relation we also get the following inverse relation (since
the rotation matrix is orthogonal):

TQ; 1 0 0 T1;
Yy, | = |0 cosé; —sind; Y1 , 1=1,2,...n. (3.3)
2Q; 0 sind; cosd; z1; + hp,

From (3.2) we have:

drq, Oxq; Oxg,

Oxy; Oy 0z 1 0 0

Iq, %aq, 9y,
Oxry; Oy Oz

=10 cosd; —sind; |, (3.4)

020, 020, Oz0, 0 sind; cosd;

Ox1; Oy 0z |

see Hofmann-Wellenhof and Moritz (2006). The angle 0; reads:

*

J]; sin 2¢p , (3.5)

5; = —hp,

where f* is the gravitational flattening. The assumption which is made for
the determination of the elements of the normal E6tvos matrix is:

Uyy(Pi) = UyQini (3'63)

We suggest the following refinement for the above elements of the normal
E6tvos matrix, see also (Manoussakis, 2013):

Uprivi: = Uyoiyos cos® &; + Uygizo: 5120 + Usg,20, sin? §; (3.7)
leiﬂfu (Pi =Ug (Pl) = UIQiIQi(Qi) + UIQiIQiZQi(Qi)hPi (3'8)

Uyriyai (P) = Uyy (P) = [UyQini (Qi) + UyQinizQi (Qi)hp] cos? §;+
UyQizQi(Qi) + UyQizQizQi(Qi)hPi] sin 20;+ (3.9)

UZQiZQi (Q:) + UZQiZQiZQi (Qi)hp] sin” §;
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Hp2

where
U 9
oitoizos = oo = N
v QitQEQs ainal’QiaZ’Qi ’Ykl (3 0)
1
aiz SO N[ 1 e (3.11)
(=) |5 - = s — [ 2 eos2 . 2
0 <k1> <2a2 2) SIn2e + <a2 cos” ¢ + sin ¢>
U o Py
T L W W o A N 12
Uszsz Qi aszawaLaZQz ’7k2 8yél (3 )
oy Oy dp oy 1
g, 00 dyg, 06 1
dq, 09dyq, 0 8;7@@; (3.13)
9y %y oy *yo, 1
2. \og? > 2 (3.14)
6yQi a¢ ByQi 6(/5 <62yQ¢>

From (3.10) and (3.12) we have that:

0%y
(UﬂfQiﬂfQiin - UyQiniZQi)Qi hp, = [’Y(kg - k%) - 783/2 ,]hpi =e1 — &9 (3.15)

The first term is approximately equal to (see appendix):

b2
&1 = _’Y(k% - k%)th = _26/27 COS2 (z)PighPi (316)

where €’ is the second numerical eccentricity of the reference ellipsoid, ~ is
the normal gravity value on the surface of the ellipsoid (at point Q;), a and
b the semi axes of the ellipsoid and hp; the geometric height of point P; on
the Earth’s physical surface. We have that:

(Wyy = Wae) — (Uyy — Use) = (—gk§ + gkt) — (vk2 — vk1) (3.17)

where k{, k§ are the values of principal curvatures of the actual equipoten-
tial surface of point P;, and k; and ks are the principal curvatures of the
normal equipotential surface at point @);, i.e. the curvatures of the reference
ellipsoid itself and ~ is the normal gravity value at point );. Making the
necessary manipulations (see appendix) we arrive at the following relation:
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(Wyy — Wea) — Ura) =
8"}/ 2 b
og( —1| hp || 2¢ hp,—
(’Y-i- a(F 8h’ P)( ot ¢P> & (3.18)
b
<5g + 1 hp>262COS op; ,
where dg(P;) is the gravity disturbance at point P;. The above equation

gives an approxmlatlon of the difference W, — Wy, — (Uyy — Uy,) which is
used in equations (2.1), (2.2) and (2.3). Adding the correction terms, see
(3.15) and (3.16), the above relation becomes:

(Wyy — Was) — (Uyy — Usa) =

(97’ Qb
=—|2v+6g(P;)+ —| hp ||2¢ cos hp —
(7 A o P)( a ¢P> : (319)

Oy b2 &%y
— P)+ =L — 26p — —1 .
<5g( ) h’ hp) €' cos P; y2 .hpl

4. Analytical expressions for the deflections of the vertical

For the sake of simplicity, we shall derive analytical expressions for the
computation of the deflections of the vertical in a small network of three
points only. Let us assume also that the differences A&1o and Anpo are
known, so we shall present expressions for A€z, Aéso, Ansz; and Ansy in
two cases: at first using only the classical part of the elements of the normal
Eo6tvos matrix and then including the suggested refinement.

Case I:

The linear system for the determination of the four unknowns A&s;, Aésa,
Ansy and Anss is the following:

A&z1sin a3 — Ansp cos agg =
_ Sz

4913 [(Wyy Waz — Uyy + Um:)|P1 sin 2a13 +

+ (Wyy — Wae — Uyy + Um‘r)‘PJ sin 2ai13 +
+ (Way — Usy)| p, cos 2a13 + (Way — Usy)| p, cos 2a13] ,
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A3 sin aigg — Anga cos g =

Sa3 '
4go3 {( vy vy )|p2 23 (4.2)
+ (Wyy — Wae — Uyy + UII)‘P[:, sin 2aip3 +
+ (Way — Usy) | p, cos 2aa3 + (Way — Ugy)|p, cos 20423} ,
A&s1 + Agp = —ALhT, (4.3)
Anst + Angz = —Angy (4.4)

where the letter “m” stands for the word “measured”. The determinant of
the above system is equal to:

sina;3 0 —cosajs 0
0 sinaos 0 — COS @923
D= = Sin(a23 — a13) . (45)
1 1 0 0
0 0 1 1

Let

- (ma +ag(P)+ 2

bQ
0 hP1> (26'2¥ cos ¢>P1> hp,—
1

8’7 b 2 82’}/ (4 6)
—(dg(P1) + — hp1>26’ cos? pp, — ——| hp = .
( Ohlq, a o,
= —(Q1)en1 + 12,
2l 12 b 2
— [ 7(Q2) + dg(P2) + B 0 hp, || 2¢e gcos op, | hp,—
2
0y b2 0y 47
- (59(P2) + h thP2> ?e’ cos? op, — 6—y2 thPz — (4.7)

= —y(Q2)ca1 + 22,
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- (wczg) +ag(py) + 2

bQ
J hPs 26/27 cos? d)Ps hp3 -
Qs a

&y b &y (4.8)
—(d9(P3) + — hp3>2€/ cos? pp, — | hey = :
( oh|g, a oy s
= —y(Q3)c31 + 32,
where
12 b? 2
c11 = | 2e 4 Cos op, | hp,, (4.8a)
22l 12 b 2
c12=—(dg(P1) + oh 0 hp, |( 2e gcos op, | hp,—
1
4.8b
- (59(131) Tl hp>i€'2 cos® pPy — i} hp e
1 2 2 1
ohlg, a oy o
12 b2 2
co1 = | 2e gcos op, | hp,, (4.8¢)
22l 12 b 2
coo = — | 0g(Pa) + oh 0 hp, || 2e gcos op, | hp,—
2
4.8d
5 P 6’7 h / 2 62’7 h ( )
- g( 2)+% Py 5€ COS ¢P2_a—y2 P
2 Q2
12 b2 2
c31 = | 2e gcos ops | hpy, (4.8¢)
2l 12 b 2
c32 = — | dg(P3) + o 0 hp, |( 2e gcos op, | hpy—
3
4.8f
- 5g(P)+@ h i6’2(:082g1> —@ h e
2 Ohlg, ) a? B o2 0, Fs

The solution for Aésq is found as follows:
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M, 0 — CoS a3
M21 sin a3 0
Dpags1 =
— A& 1 0
—Any; 0 1

— COS as3

0

0
1

where M1; and My are auxiliary terms:

(4.9)

M= {[_(7(Q1)611 +7(@3)c31) + c12 + cz2] sin 2a13 +

S
+ [ny(Pl) + Wa:y(PS)] Cos 2(113}£

4913

Mo = {[_(7(Q2)021 +v(@3)c31) + c22 + c32] sin 2a23 +

+ [(Way(Ps) + Way(Ps)] cos 2a23}:;;’ ,
and
Ags1 = % :
We split the solution in two parts i.e.
M{; 0 —cosas 0
M), sinags 0 —cosasgs
Dpez1 = +
0 1 0 0
0 0 1 1
M7, 0 —cosas 0
My, sinazs 0 —cosass
" N 0 0
AR 0 1 1

(4.10)

(4.11)

= D1 +Dcl

where M, M}, M7, and MY, are auxiliary terms as well:

S
My, = —{7(Q1)C11 + 7(@3)031}49%

sin 2a13,
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Saoz .
Mél = _{7(Q2)C21 + 7(@3)031}4& sin 2ao3 ,
923

Si3
4g13
Sa3

Méll = {[622 + 032] sin 2a93 + [me (PQ) + me(Pg)] CcOS 2&23}49? .

M{II = {[612 + 032] sin 2a13 + [me(Pl) + me(Pg)] CcOS 2&13}

The rationale for the splitting is that, in both cases, the second determinant
will remain unchanged and only the first determinant will change. Hence:

1

Ay =
Sln(agg — (L13)

(D1 + De,) . (4.12)

Similar relations hold for the rest of the unknowns i.e.:

1
Afgg= ——— (Dy+D.,), 413
€32 Sin(agg—alg)( 2+ De,) (4.13)
Amgi = —— (Dy+Dy,) (4.14)
1
Anzg = ————(Dys+ D,,) . (4.15)

sin(a23 — (L13)

Case II:

We now apply the suggested refinement to the elements of the normal E6tvos
matrix. The above solution becomes:

M{; 0 —cosas 0
Do — 2 M3, sinags 0 — COS a93 N
0 1 0 0
0 0 1 1
M7, 0 —cosais 0 (4.16)
M3, sinags 0 — oS a3
" A& 1 0 0o |
A0 1 1
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and the new solution is:

D,
ALY = Ay + ———— 4.17
€31 €31 Sin(azs — a13) (4.17)

and
Dy
AERSY = AN€gp + ——— F——— 4.18
532 552 Sln(a23 — a13) ( )
D3
A new — A + - 4.19
M31 n31 SID(CLQg _ a13) ( )
D
Anjs® = Angg + & (4.20)

Sin(a23 — a13)
Since the second terms in the right hand side of (4.17) to (4.20), which

also appear in (4.12) to (4.15), are not considered negligible in the classical
solution, then they should not be considered negligible in the new solution.

5. Impact on the improvement of the deflections of the ver-
tical — example

We chose three points in the broad Athens area, for which we have data from
a gravity net established by the National Technical University of Athens.
Point P is located at the National Observatory of Athens, point P» at the
Dept. of Topography of the National Technical University and point Ps3 at
the Dionysos Satellite Station. The relevant data are in Table 1:

Table 1. Coordinates and other data of the chosen points
Point ¢ [°] A hm] | g [mgal] | &[] | n[]
Py 1 37.973210444 | 23.718125278 | 190.20 | 979950.543 | —3.622 | —10.093

Py |37.975138889 | 23.780219444 | 244.00 | 979940.832 | —2.826 | —8.490
P31 38.078595500 | 23.932465861 | 510.40 |979778.625 | —2.262 | —0.025

The values (£,n) of the deflection of the vertical were derived from the
EGM2008 gravitational model (Hirt, 2010) and were properly adjusted to
the Earth’s physical surface.

Other computed elements are as follows (Table 2):
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Table 2. Distances, azimuths and deflection differences

512 = 5460.01 m 19 = 87.73362° A§12 = 0.796” A’I712 = 1.603”
So3 = 17622.45 m | aipg = 49.28850° | Aoz = 0.564" | Angz = 8.465"
S13 = 22158.53 m | a3 = 58.07052° | A&z = 1.360" | Anz = 10.068”

The known parameters are the values of A1 and Anis. Since the values
of W, at the three points are not known, we can only compute the fractions
of A¢ and An from the first part of (4.12)—(4.15) (determinants D1, Do, Ds,
and Dy) and compare them with the whole values (known from the model).
In Table 3, which summarizes the results, we present the computed fractions
of A¢ and An from determinants Dy, Dy, D3, and Dy, as explained above
(denoted “D value”).

Table 3. Results of the numerical example

Model value [’] | Case I — D value ["] | Case II — D value ["]
AVSE: 1.360 —0.0011 —0.0022
A3 0.564 0.0011 0.0022
Ams 10.068 —0.0015 —0.0030
Anjos 8.465 0.0015 0.0030

From the results presented in Table 3 we see that the proposed refinement
of the normal E6tvos matrix modifies the values of the deflections of the
vertical by a few milliarcseconds.

6. Conclusions

In this paper we briefly presented the determination of the deflection of
the vertical at points on the Earth’s physical surface with the aid of tor-
sion balance measurements. We used algebraic equations which include,
amongst others, the second order partial derivatives of the actual gravity
potential and the second order partial derivatives of the normal potential
(the diagonal independent elements of the normal E6tvos matrix). The ac-
tual values are taken at points of interest on the Earth’s physical surface,
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while the normal values are taken on the surface of the reference ellipsoid.
We then outlined the method for the determination of the second order par-
tial derivatives of the normal potential on the Earth’s surface. In the last
sections we produced analytical expressions for the computations of the el-
ements of the deflection of the vertical. Finally, using a numerical example,
we showed that the suggested refinement is small but not negligible.

Acknowledgments. We would like to thank the colleagues from the Dept. of
Topography of the National Technical University of Athens for providing some necessary
data. The very helpful comments of the reviewer are also heartily acknowledged.

References

Hirt C., 2010: Prediction of vertical deflections from high-degree spherical harmonic
synthesis and residual terrain model data. Journal of Geodesy, 84, 3, 179-190.
Hofmann-Wellenhof B., Moritz H., 2006: Physical Geodesy, Second Edition, Springer

Wien — New York, 82, 233.

Livieratos E., 1976: On the geodetic singularity problem, Manuscripta Geodetica, 1,
269-292.

Manoussakis G., 2013: Estimation of the normal E6tvés matrix for low geometric heights.
Acta Geodetica et Geophysica, 48, 2, 179-189.

Toth Gy., Rozsa Sz., Adam J., Tziavos I. N.; 2001: Gravity Field Recovery from Torsion
Balance Data Using Collocation and Spectral Methods. Presented at the EGS XX VI
General Assembly, Nice, France, March 26-30.

Volgyesi L. 1993: Interpolation of the deflection of the vertical based on gravity gradients.
Periodica Polytechnica Ser. Civil Eng., 37, 2, 137-166.

Volgyesi L., 1998: Geoid Computations Based on Torsion Balance Measurements, Reports
of the Finnish Geodetic Institute 98, 4, 145-151.

Volgyesi L., 2001: Local geoid determination based on gravity gradients. Acta Geodetica
et Geophysica Hungarica, 36, 2, 153-162.

Appendix
Equation (3.17) can be further analysed to:

(Wyy = W) — (Uyy — Uszz) = (—gk§ + gk{) — (vh2 — vk1) =

(A.1)
= (v* +0g) (k1 — k%) —v(k1 — k2) ,
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where v* is the normal gravity value at point P; and dg is the gravity
disturbance at the same point. In addition:

(v* +69)(k — k3) —v(k1 — ko) =

0
- (w 5 hp,)(k% —k8) + 0g(k{ — ) — (ki — k) = (A2)
Z1Q;
0
=90k — k) = 90k — ko) + 51| B (K ) + dg (ke — k).

The right hand side of equation (A.2) approximately becomes:
(i) (& w)
"\Bi+hp, Ro+hp) "\R R

o < 1 1 )
Byt 0 - ,
* (az‘Qi il 9> Rithp,  Fothr

where R; and Ry are the values of the principal radii of curvature of the
ellipsoid at point @);. But:

(A.3)

1 B 1 B 1 _ 1 ~
Ri+ hp, Rs + hp, N ( hP¢> ( hPi> -
g ¢ Ry (1 Ry |1
1|1+ R 2|1+ Ry (A.4)
) ()
- R1 R1 RQ RQ .
Therefore, with the help of relation (A.4), relation (A.3) becomes:
1 hp, 1 hp, 1 1 )
S O I 2 [ T N -
e 0-%) w05 (5 m)t
(] s {1 (1 hpi> 1(1 hpi>] (A.5)
0z Qs P g R1 R1 RQ R2
After minor manipulations we have that:
11 Oy 11
—vhp, | =5 — =5 —| hp +09||=5 — =
(A.6)

)
"UrTEL
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For the principal curvatures it holds that (Hofmann- Wellenhof and Moritz,
2006):

11

R_l — R_2 = —%6,2 COS2 (A?)
1 1207 o

BB a A

Relation (A.6) becomes:

b o 2 v
—2’yhpi¥e’ cos® ¢ — (%

b

hp, + 59(3‘)) {—26/2 cos? ¢ +
i “ (A.9)

20 5

+hp,—e cos” .

a
Rearranging the terms of the above relation we arrive at the following rela-
tion:
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From relation (A.8) we have:
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From (3.15), (A.10) and (A.11) (substituting the letter “2” with the letter

“h” in the vertical gradient of normal gravity) we finally conclude that the

improved term is equal to:
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