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Abstract: The gravity gradiometric data are affected by the topographic and atmo-
spheric masses. In order to fulfill Laplace-Poisson’s equation and to simplify the down-
ward continuation process, these effects should be removed from the data. However, if the
analytical downward continuation is considered, the gravity gradients can be continued
downward disregarding such effects but the result will be biased. The topographic and
atmospheric biases can be expressed in terms of spherical harmonics and studying these
biases gives some ideas about analytical downward continuation of these quantities to sea
level. In formulation of harmonic coefficients of the topographic and atmospheric biases,
a truncated binomial expansion of topographic height is used. In this paper, we show
that the harmonics are convergent to the third term of this binomial expansion. The
harmonics of the biases on Vzz are convergent to the first term and they are convergent
in Vxy for all the terms. The harmonics of the other components of the gravity gradient
tensor are convergent to the second terms, while the third terms are only asymptotically
convergent. This means that in terrestrial and airborne gradiometry the biases should
be computed just to the second order term, while in satellite gravity gradiometry, e.g.
GOCE, the third term can also be considered.

Key words: asymptotic convergence, atmospheric density model, binomial expansion,
external and internal potentials, global spherical harmonic analysis

1. Introduction

The gravity gradiometric data can be measured at the Earth’s surface,
airborne or satellite levels. In order to determine the physical shape of
the Earth or the geoid, the gravitational gradients are useful tools. Sim-
ilar to the other methods the effect of the topographic and atmospheric
masses should be removed to make the computational space harmonic and
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to smooth the gravitational field. In such a non-topographic and non-
atmospheric space, it will be easier to continue the gradients downward to
sea level. By removing the topographic and atmospheric effects the equipo-
tential surfaces change. Therefore, these effects should be restored on the re-
sults of downward continuation. However, based on analytical continuation
(Moritz, 1980), these effects may not be removed prior to the computations.
The Kungliga Tekniska Högskolan (KTH) geoid determination method was
developed based on the analytical continuation. It is well-known as the
least-squares modification of the Stokes formula (Sjöberg 1984, 1991 and
2003) with additive corrections including the total topographic and atmo-
spheric effects on the geoid. In fact, an approximate geoid is computed
using the modified Stokes formula and surface gravity anomalies, and the
effects of disregarded topographic and atmospheric masses are subsequently
removed from the approximate geoid. Since the data is directly continued
downward to sea level without considering the topographic and atmospheric
effects, the result of the downward continuation will be biased. These biases
are called topographic and atmospheric biases (Sjöberg 2007; Eshagh and
Sjöberg 2008; Eshagh 2009a). The topographic and atmospheric biases can
be considered for the satellite gravity gradiometry data when the gravity
gradients are directly continued downward to sea level for local gravity field
determination. The use of the gravity field and steady-state ocean circula-
tion explorer (GOCE) data (ESA, 1999; Albertella et al., 2002; Balmino et
al., 1998 and 2001) for this goal, namely direct analytical downward contin-
uation of the GOCE data and removing the topographic and atmospheric
biases from the downward continued data, is promising.
Expressions for the topographic and atmospheric potentials in spheri-

cal harmonics are not new. These effects were mostly considered in geoid
determination aspects. The topographic effect has been considered by sev-
eral geodesists (e.g. Rummel et al., 1988; Martinec et al., 1993; Martinec
and Vańıček, 1994; Sjöberg, 1998; Sjöberg and Nahavandchi 1999; Tsoulis,
2001; Heck, 2003; Seitz and Heck, 2003; Sjöberg, 2000, 2007). The main
goal of these efforts was to compute the topographic effect on geoid and
terrestrial gravimetric data considering terrain correction. Wild and Heck
(2004a; 2004b) considered the topographic effect on satellite gradiometry
observations. They also considered the second order radial derivative in
their computations. Makhloof and Ilk (2005; 2006) studied the topographic-
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isostatic effects on airborne gravimetry, satellite gravimetry and gradiome-
try data. More details about their work can be found in Makhloof (2007).
Novák and Grafarend (2006) presented a method for computing the to-
pographic and atmospheric effects in satellite gravimetry and gradiometry.
Atmospheric effect was investigated by Ecker and Mittermayer (1969); Wal-
lace and Hobbs (1977); Sjöberg (1993, 1998, 1999, 2001 and 2006); Sjöberg
and Nahavandchi (2000); Novak (2000) and Tenzer et al. (2006). Eshagh
and Sjöberg (2008, 2009a, 2009b) and Eshagh (2009a; 2009b) have inves-
tigated the atmospheric effect on the satellite gradiometric data. Sjöberg
(2007) presented the topographic bias in analytical continuation and con-
cluded that for considering the topographic effect on geoid, it is enough
to consider the topographic Bouguer shell effect. Later, Vermeer (2008)
commented on his paper and used the spherical harmonics to prove that
Sjöberg’s (2007) topographic bias is an approximation of the total topo-
graphic effect. Sjöberg (2008), in response of Vermeer (2008), mentioned
that the spherical harmonic expansion using a binomial expansion of to-
pography to fourth term was not convergent and the spherical harmonic
expansion for the topographic bias would not be a correct way to disprove
his results. Later on Sjöberg (2009a; 2009b) theoretically proved that the
topographic bias was exact and even proved that there was no need to con-
sider the terrain correction in geoid computation.
In this paper we review the topographic bias and present the atmo-

spheric biases in spherical harmonics, which is a new subject. The biases
are then considered in gravity gradiometry and the mathematical models
of the biases are presented for each gravitational gradient which were not
investigated before. The convergence of topographic and atmospheric biases
on the gradients is numerically studied.

2. Background

After adopting the spherical approximation, the topographic and atmo-
spheric external and internal potentials are expressed by the spherical har-
monic series as follow:

V t,aext (P ) =
GM

R

∞∑
n=0

(
R

r

)n+1 n∑
m=−n

(
vt,aext

)
nm

Ynm (Ω), (1a)
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V t,aint (P ) =
GM

R

∞∑
n=0

(
r

R

)n n∑
m=−n

(
vt,aint

)
nm

Ynm (Ω), (1b)

where GM is the geocentric gravitational constant, R is the mean Earth’s
radius, r is the geocentric distance of the point P ,

(
vt,aext

)
nm
and

(
vt,aint

)
nm

are the fully-normalized spherical harmonic coefficients of the external and
internal type for either the topographic or the atmospheric potentials with
degree n and order m, and Ynm (Ω) is the fully-normalized spherical har-
monics at the spherical angle Ω (Ω = (θ, λ), θ is the co-latitude and λ
is the longitude of the point P ) with the following orthogonality property
(Heiskanen and Moritz, 1967, p. 33):∫∫
σ

Ynm (Ω)Yn′m′ (Ω) dσ = 4πδnn′δmm′ , (1c)

where σ is the total solid angle, dσ is the surface integration element, and

δnn′ =

{
1 n = n′

0 n �= n′ and δmm′ =

{
1 m = m′

0 m′ �= m′ . (1d)

Based on Eq. (1c), the spherical harmonic coefficients
(
vt,aext

)
nm
and

(
vt,aint

)
nm

take the form:

(
vt,aext

)
nm
=

R

4πGM

(
r

R

)n+1 ∫∫
σ

vt,aext
(
Ω′
)
Ynm

(
Ω′
)
dσ, (1e)

(
vt,aint

)
nm
=

R

4πGM

(
R

r

)n ∫∫
σ

vt,aint
(
Ω′
)
Ynm

(
Ω′
)
dσ, (1f)

where Ω′ spherical angle of the integration points.
There are two important assumptions in formulation of the external and

internal harmonics: a) the density of the topographic masses is constant, b)
the density of the atmospheric masses changes radially. These two assump-
tions lead to different way of formulation of the topographic and atmospheric
potentials. In what follows, we continue the discussion with external and
internal types of the topographic potential.
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2.1. Internal and external harmonics of the topographic
potential

If in the formulation of the topographic potential in terms of spherical
harmonics the binomial expansion of the topographic heights is truncated to
third-order (before spherical harmonic analysis), the internal and external
harmonics will have the following forms (see e.g., Martinec and Vańıček,
1994; Sjöberg, 2000; Eshagh, 2009a):

(
vtext

)
nm
≈ 3ρt

(2n+ 1) ρe

[
Hnm

R
+ (n+ 2)

H2nm

2R2
+ (n+ 2) (n+ 1)

H3nm

6R3

]
, (2a)

and(
vtint

)
nm
≈ 3ρt

(2n+ 1) ρe

[
Hnm

R
− (n− 1) H2nm

2R2
+ n (n− 1) H3nm

6R3

]
, (2b)

where ρt ≈ 2667 kg/m3 and ρe ≈ 5500 kg/m3 are the density of the to-
pographic masses and the mean Earth’s density, respectively, Hnm, H2nm

and H3nm are the spherical harmonic coefficients of H, H 2 and H3, respec-
tively, andH stands for the topographic heights above sea level (orthometric
height).
Formulation of the harmonics of the atmospheric potentials is not as

simple as that of topography since the atmospheric density changes radi-
ally. The mathematical model of the harmonics depends on the atmospheric
density model which is used. Different analytical models were proposed for
the atmospheric density, as summarized in the next subsection.

2.2. Internal and external harmonics of the atmospheric
potential

As mentioned before, the mathematical model of the harmonics of the at-
mospheric potential depends on the type of the analytical density model
used. Here we briefly present some of these analytical models as well as
their corresponding internal and external harmonics.

2.2.1. The exponential model

An exponential function for the atmospheric density can be considered as
(Lambeck, 1988):
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ρa(h) = ρ0e
−α′h, (3a)

where ρa(h) is the radial atmospheric density distribution function, ρ0 =
1.2227 kg/m3 is the atmospheric density at sea level, R is the mean radius
of the Earth, h is the height of any point above sea level and inside the
atmosphere and α′ = 1.3886 × 10−4 km−1 is a constant.
The external and internal types of harmonics of the atmospheric potential

are (Eshagh, 2009a; 2009b):

(vaext)nm ≈
3ρ0

(2n + 1) ρe

{
Mδn0 − Hnm

R
− n+ 2− α′R

2R2
H2nm−

− (n+ 2) (n+ 1− 2α
′R) + α′2R2

6R3
H3nm

}
. (3b)

and

(vaint)nm ≈
3ρ0

(2n+ 1) ρe

{(
1− Le−α′Z

α′R
+
1− e−α′Z

α′2R2

)
δn0−Hnm

R
−

− −n+ 1− α′R
2R2

H2nm −
(n− 1) (n+ 2α′R) + α′2R2

6R3
H3nm

}
, (3d)

where

M =

⎡
⎣(1− Le−α′Z

)(2 + α′ (R+ Z)
α′2R2

)
+
2
(
1− e−α′Z

)
α′3R3

− Z

R2α′

⎤
⎦, (3f)

L = 1 +
Z

R
. (3g)

In formulating the atmospheric potentials (both external and internal types),
it is assumed that the atmospheric masses are bounded to a certain altitude
above sea level. The topographic masses are replaced by the atmospheric
masses which are subtracted from the atmospheric shell from sea level to
the upper bound of the atmospheric masses.

2.2.2. The power model

The power model is (Sjöberg, 1993):
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ρa(h) = ρ0

(
R

R+ h

)ν

, where h ≥ 0. (4a)

The constant ν was derived by a simple fitting to the logarithmic scale of
the atmospheric density. The Sjöberg fitting (Sjöberg, 1993) was based on
the model presented by the Reference Atmosphere Committee in 1961 (Ref-
erence Atmosphere Committee, 1961), and this model was updated based
on the United States Standard Atmosphere (1976), by Eshagh and Sjöberg
(2009b). In the former case the exponent ν = 850 was derived, but in the
latter (updated) model ν = 930 was achieved.
The external and internal harmonics of the atmospheric potential based

on the power model have the following mathematical forms (Eshagh, 2009a;
2009b):

(vaext)nm ≈
3ρ0

(2n + 1) ρe

{(
L3−ν − 1) δn0

3− ν
− Hnm

R
− n+ 2− ν

2R2
H2nm −

− (n+ 2− ν) (n+ 1− ν)
6R3

H3nm

}
, (4b)

and

(vaint)nm ≈
3ρ0

(2n+ 1) ρe

{(
1− L2−ν

)
δn0

ν − 2 − Hnm

R
+

n+ ν − 1
2R2

H2nm−

− (n+ ν − 1) (n+ ν)
6R3

H3nm

}
. (4c)

2.2.3. The KTH model

This model was proposed by Eshagh and Sjöberg (2009b) for the atmospheric
density:

ρa (h) =

⎧⎨
⎩

ρ0
[
1 + αh+ βh2

]
, 0 ≤ h ≤ H0,

ρa (H0)
(
R+H0
R+ h

)v′′
, H0 ≤ h ≤ Z,

(5a)

where H0 = 10 km, ρa(H0) = 0.4127 kg/m3, α = −7.6495 × 10−5m−1,
β = 2.2781 × 10−9m−2 and v′′ = 890. The first part of this model was
presented by Novák (2000).
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The harmonic formulation of the atmospheric potential based on this
model is rather complicated and its external and internal types of harmon-
ics have the following forms (Eshagh and Sjöberg, 2008, 2009b; Eshagh,
2009a):

(vaext)nm ≈
3

(2n+ 1)ρe

{
ρ0

[
H0 δn0 −Hnm

R
+ (n + 2− αR)

H20δn0 −H2nm

2R2
+

+ (n+ 2)(n + 1− 2αR) + 2βR2
]

H30δn0 −H3nm

6R3
+

+
ρ(H0)(KνLn+3−ν −Kn+3)

n+ 3− ν
δn0

}
(5b)

and

(vaint)nm ≈ 3
(2n + 1)ρe

{
ρ0

[
H0δn0 −Hnm

R
− (n− 1− αR)

H20δn0 −H2nm

2R2
−

− (1− n)(n+ 2αR)− 2βR2
]

H30δn0 −H3nm

6R3
+

+
ρ(H0)(KνL−n−ν+2 −K−n+2)

−n− v + 2
δn0

}
, (5c)

where

K = 1 +
H0
R

. (5d)

3. Topographic and atmospheric biases in spherical harmon-
ics

The bias is defined as a difference between the downward continued external
potential and the internal one at sea level. Mathematically, this idea can
be expressed as:

V t,ab (P ) =
[
V t,aext (P )

]∗ − V t,aint (P ), (6a)
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where [ ]∗ stands for downward continuation.
[
V t,aext (P )

]∗
and V t,aint (P ) are

obtained by considering r = R in Eqs. (1a) and (1b). Equation (6a) can
also be expressed in terms of spherical harmonic series:

V t,ab (P ) =
GM

R

∞∑
n=0

n∑
m=−n

(
vt,ab

)
nm

Ynm(Ω), (6b)

where
(
vt,ab

)
nm
is the spherical harmonic coefficients of either the topo-

graphic or atmospheric biases.
According to Eqs. (2a) and (2b) and the definition of the potential bias

in Eq. (6a), we can show that the harmonics of the topographic bias are:

(
vtb

)
nm
≈ 3ρ

t

ρe

(
H2nm

2R2
+

H3nm

3R3

)
. (7)

As Eq. (7) shows,
(
vtb
)
nm are decreasing as long as H2nm and H3nm decrease,

and consequently there is no problem in the convergence of
(
vtb
)
nm. How-

ever, this is not the case for the atmospheric bias. In what follows, we
will mathematically analyze the atmospheric biases based on density mod-
els mentioned above.
According to the power model and its harmonics, Eqs. (4b) and (4c), the

following harmonic coefficients are obtained for the atmospheric bias (based
on Eq. 6a):

(vab)nm ≈ 3ρ0
ρe

{
1
3−ν

[
ZL2−ν

R
+
1−L2−ν

2−ν

]
δn0 − H2nm

2R2
+ (ν−2)H

3
nm

3R3

}
. (8a)

The harmonics of the atmospheric bias based on the exponential density
model is obtained by substituting Eqs. (3b) and (3d) into Eq. (6a):

(vab)nm ≈ 3ρ0
ρe

{[
(2 + Z)

(
1− Le−α′Z

)
+
(
1− e−α′Z

)( 2
α′R

− 1
)]

δn0 −

− H2nm

2R2
+ (α′R− 1)H

3
nm

3R3

}
. (8b)
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Finally, the harmonics of the atmospheric bias based on the KTH model
are obtained by inserting Eqs. (5b) and (5c) into Eq. (6a):

(vab)nm ≈ 3
ρe

{
ρ0

[
H20
2R2

+ (1− αR)
H30
3R3

]
δn0 + ρ(H0)K

ν ×

×
[
L2−ν

(
L

3− ν
− 1
2− ν

)
−K2−ν

(
K

3− ν
+

1
2− ν

)]
δn0 −

− ρ0H
2
nm

2R2
+ (αR − 1)ρ0H

3
nm

3R3

}
. (8c)

Until now we have considered the potential bias of the topographic and
atmospheric potentials. In this case we assumed that the potentials are
given outside the Earth’s surface and after harmonic downward continuation
of the potentials to sea level the effects are restored using the corresponding
internal types. Now, we shall study the case where the biases are considered
on the gradients.

4. Topographic and atmospheric biases in gradiometry

The spherical harmonic expansions of the gravitational gradients were pre-
sented by Reed (1973). He used the external type of the potential in his
expressions. Based on Reed (1973) formulas, Eshagh (2009a) developed the
internal types of the gravitational gradients at sea level. According to our
definition of the bias, we define the gradient biases as a difference of the
downward continued topographic or atmospheric effects on the gradients to
sea level and their corresponding internal type of the effects. According to
this definition, we can write (Eshagh, 2009a):

biasV t,azz (P ) =
GM

R3

∞∑
n=0

n∑
m=−n

[
(n + 1)(n + 2)

(
vt,aext

)
nm
−

− n(n− 1)
(
vt,aint

)
nm

]
Ynm(Ω), (9a)
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biasV t,axx (P ) =
GM

R3

∞∑
n=0

n∑
m=−n

{[
−(n+ 1)

(
vt,aext

)
nm
− n

(
vt,aint

)
nm

]
Ynm(Ω) +

+
[(

vt,aext

)
nm
−
(
vt,aint

)
nm

] ∂2Ynm(Ω)
∂θ2

}
, (9b)

biasV t,ayy (P ) =
GM

R3

∞∑
n=0

n∑
m=−n

{[
−(n+ 1)

(
vt,aext

)
nm
− n

(
vt,aint

)
nm

]
Ynm(Ω) +

+
[(

vt,aext

)
nm
−
(
vt,aint

)
nm

](cos θ
sin θ

∂2Ynm(Ω)
∂λ ∂θ

−m2
∂2Ynm(Ω)

sin2 θ ∂λ2

)}
, (9c)

biasV t,axy (P ) =
GM

R3

∞∑
n=0

n∑
m=−n

[(
vt,aext

)
nm
−
(
vt,aint

)
nm

]
×

×
[
1
sin θ

∂2Ynm(Ω)
∂λ ∂θ

− cos θ
sin2 θ

∂Ynm(Ω)
∂λ

]
, (9d)

biasV t,axz (P ) =
GM

R3

∞∑
n=0

n∑
m=−n

[
(n + 2)

(
vt,aext

)
nm
−

− (1− n)
(
vt,aint

)
nm

]
∂Ynm(Ω)

∂θ
, (9e)

and

biasV t,ayz (P ) =
GM

R3

∞∑
n=0

n∑
m=−n

[
(n + 2)

(
vt,aext

)
nm
−

− (1− n)
(
vt,aint

)
nm

]
∂2Ynm(Ω)
sin θ ∂θ ∂λ

. (9f)

In Eqs. (9a)–(9f),
(
vt,aext

)
nm
and

(
vt,aint

)
nm
are the external and internal

harmonics of either the topographic or the atmospheric potential, respec-
tively. We already know the mathematical models of

(
vtext
)
nm and

(
vtint
)
nm;
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see Eqs. (2a) and (2b). Substituting Eqs. (2a) and (2b) into Eqs. (9a)–
(9c) and after further manipulations, we can obtain the spherical harmonic
coefficients of the topographic biases on the gradients. The atmospheric
biases on the gradients can be derived in a similar way. Let us start with
the topographic gradient biases in the following section.

4.1. Topographic bias on gravitational gradients

We start the discussion with the topographic bias on Vzz. Substituting Eqs.
(2a) and (2b) into Eq. (9a) and after further simplifications, we obtain:

(
vtb

)zz

nm
≈ 3ρ

t

ρe

[
Hnm

R
+
(
n2 + n+ 4

) H2nm

2R2
+ 4

(
n2 + n+ 1

) H3nm

6R3

]
. (10a)

As Eq. (10a) shows, the harmonics of the topographic bias on the gradi-
ent are convergent to the first term. The second and third terms are not
convergent or they are asymptotically convergent, meaning that they are
convergent until a certain degree and then they diverge.
Equations (9b) and (9c) consist of two parts, the harmonics which are

multiplied by Ynm (Ω), and those multiplied by
∂2Ynm(Ω)

∂θ2 . The harmonics of
the former is slightly more complicated and needs to be investigated. Here
we concentrate on the first part only. Substituting Eqs. (2a) and (2b) into
the harmonics of the first part of Eqs. (9b) and (9c), we obtain the following
expression:

(
vtb

)xx

nm
=
(
vtb

)yy

nm
≈ −3ρ

t

ρe

[
Hnm

R
+

H2nm

R2
+
(

n2 + 3 +
n− 1
2n+ 1

)
H3nm

6R3

]
. (10b)

Equation (10b) shows that the first and second topographic terms are con-
vergent, but it can be asymptotically convergent to the third term.
Substituting Eqs. (2a) and (2b) into Eqs. (9e) or (9f) will lead to the

same harmonics, namely:
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(
vtb

)xz

nm
=
(
vtb

)yz

nm
≈ 3ρ

t

ρe

[
Hnm

R
+
3H2nm

2R2
+
(
n2 + n+ 4

) H3nm

6R3

]
. (10c)

The first two terms in the squared brackets express the topographic bias
and we can conclude that the harmonics are convergent to the second to-
pographic term. Again, we observe the divergence in the third term.
Repeating the same process for Eq. (9d) yields the following expression

for the harmonics(
vtb

)xy

nm
≈ 3ρ

t

ρe

(
Hnm

2R2
+

H2nm

3R3

)
, (10d)

which are convergent.
Equation (10a) shows that if we aim to consider the topographic bias on

Vzz, we should not use the second and third topographic terms. Equations
(10b) and (10c) suggest using the first two terms for computing the topo-
graphic bias on Vxx and Vyy, and Vxz and Vyz. No difficulty in convergence
is observed in the harmonics of topographic bias on Vxy.

4.2. Atmospheric bias on gravitational gradients

Investigation of the atmospheric bias on the gravitational gradients is similar
to that of the topographic bias, but depends on the type of the atmospheric
density model. Therefore, we study the biases based on each model. Let
us start with the power model. The atmospheric bias on Vzz based on this
model is:

(vab)
zz
nm ≈

3ρ0
ρe

{
2δn0

3− ν

[
L3−ν − 1

]
− 2Hnm

R
− (n2 + n+ 4− 2ν)H

2
nm

2R2
+

+
[
−4
(
n2 + n+ 1

)
+ 2ν

(
n2 + n+ 3

)
− 2ν2

] H3nm

6R3

}
. (11a)

Again, we see that the second and third topographic terms are not con-
vergent. The atmospheric bias on Vxx and Vyy based on the power model
is:

(vab)
xx
nm

(vab)
yy
nm

⎫⎬
⎭≈ 3ρ0ρe

{
δn0

3− ν

[
1− L3−ν

]
+

Hnm

R
+ (2− ν)

H2nm

R2
+
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+
(
n2 + n+ 2− 3ν + ν2

) H3nm

6R3

}
. (11b)

Equation (11b) converges to its second topographic term. The atmospheric
bias on Vxz and Vyz based on the power model is:

(vab)
xz
nm

(vab)
yz
nm

⎫⎬
⎭≈ 3ρ0ρe

{[
2
(
L3−ν − 1)
3− ν

− L2−ν − 1
2− ν

]
δn0 − Hnm

R
+ (ν − 3)H

2
nm

2R2
+

− (n2 + n+ 4− 5ν + ν2)
H3nm

6R3

}
. (11c)

A similar conclusion as that concluded for Eq. (11b) can be made for Eq.
(11c).
If the exponential density model is considered for the atmospheric masses,

the atmospheric bias on Vzz can be shown to take the form:

(vab)
zz
nm ≈

3ρ0
ρe

{
2Mδn0 − 2Hnm

R
−
(
n2 + n+ 4− 2α′R

) H2nm

2R2
+

+
[
−4
(
n2 + n+ 1

)
+ 2α′R

(
n2 + n+ 4

)
− 2α′2R2

] H3nm

6R3

}
, (12a)

where M was already defined in Eq. (3f). The atmospheric bias on Vxx and
Vyy based on the exponential model is:

(vab)
xx
nm

(vab)
yy
nm

⎫⎬
⎭≈ 3ρ0ρe

{
−Mδn0 − Hnm

R
+ (α′R− 2)H

2
nm

R2
−

−
(
n2 + n+ 2 + 4α′R− α′2R2

) H3nm

6R3

}
, (12b)

and the atmospheric bias on Vxz and Vyz based on this model is:

(vab)
xz
nm

(vab)
yz
nm

⎫⎬
⎭≈ 3ρ0ρe

{⎡⎣(4 + 2Z + α′R)
(
1− Le−α′Z

)
α′2R2

+
(
1− e−α′Z

)
×

×
(
4

α′R
− 1
)
− 2Zα′

]
δn0 − Hnm

R
+ (α′R− 3)H

2
nm

2R2
−
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−
(
n2 + n+ 4− 6α′R+ α′2R2

) H3nm

6R3

}
. (12c)

Similar interpretation as those for Eqs. (11a)–(11c) can be made for
Eqs. (12a)–(12c).
In a similar way we can obtain the atmospheric bias based on the KTH

model, although it is slightly complicated but the strategy of the derivations
of the harmonics is the same as that is for the other density models. The
bias on Vzz, Vxx, Vyy, Vxz and Vyz are:

(vab)
zz
nm ≈

3
ρe

{
2(A +B)δn0 −

[
Hnm

R
+
(
n2 + n+ 4− 2αR

) H2nm

2R2
+

+
(
−4(n2 + n+ 1) + 2αR(n2 + n+ 4)− 4βR2

) H3nm

3R3

]
ρ0

}
, (13a)

(vab)
xx
nm

(vab)
yy
nm

⎫⎬
⎭≈ −3ρe

{
(A+B)δn0 −

[
Hnm

R
+ (αR − 2)H

2
nm

2R2
+

+
(
n2 + n+ 2− 4αR− 2βR2

) H3nm

3R3

]
ρ0

}
, (13b)

and

(vab)
xz
nm

(vab)
yz
nm

⎫⎬
⎭≈ 3ρe

{
(A+B − C)δn0 −

[
Hnm

R
+ (αR − 3)H

2
nm

2R2
+

+
(
n2 + n+ 4− 6αR+ 2βR2

) H3nm

3R3

]
ρ0

}
, (13c)

where

A = ρ0

[
H0
R
+ (2− αR)

H20
2R2

+ 2
(
1− 2αR + 2βR2

) H30
3R3

]
, (13d)

B =
ρ (H0)Kν

(
L3−ν −K3−ν

)
3− ν

and C =
ρ (H0)Kν

(
L2−ν −K2−ν

)
2− ν

. (13e)
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5. Numerical studies

In order to numerically study the convergence of the harmonic expansion
of the atmospheric potential, we use the delivered topographic model from
the shuttle radar topography mission (Wieczorek, 2007) global topographic
model and generate Hnm, H2nm and H3nm in a global spherical harmonic
analysis to the degree and order 2160, corresponding to 5′ × 5′ resolution.
The harmonics Hnm, H2nm and H3nm are used to generate degree variances
of each topographic term. In the following, we present the degree variances
of external and internal harmonics of the atmospheric potential and then
we consider the atmospheric bias.

5.1. Numerical studies on atmospheric potentials and bias

The degree variances of the external and internal atmospheric potentials
based on the aforementioned density models are computed and plotted for
better investigation of the topographic terms.
Figures 1a and 1b show the degree variances of each term of the external

and internal atmospheric potentials, respectively, based on the exponential
model. Unexpected changes are seen in Fig. 1a for the second and third
terms of the external harmonics. As can be seen, the values of these terms
are decreasing before a certain degree and increasing beyond. If we consider
Eq. (3a) at the constant α′ = 1.3886 × 10−4, we see that its multiplication
by R = 62378137 gives 885.67. As the figure shows, the second and third
terms are very small around this degree. According to Eq. (3b) one can see
that the coefficient of the second term is n+2−α′, which will be very small
when n = 883. The reason for the third term is similar. This is due to the
binomial expansion of the topographic heights for deriving the harmonics
of the external atmospheric potentials. Figure 1b shows the internal type
of the harmonics and, as can be seen, the second and third terms will have
more or less the same power as the first term around the degrees 1700 and
2000, meaning that the internal series of the harmonics do not converge for
higher degrees. Similar interpretation can be made for Figs. 2a and 2b for
the power model when ν = 850. As for the harmonics of the KTH model,
we can say that both the external and internal series are convergent for the
degrees below 2000, but not for higher.
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Fig. 1. Degree variances of each topographic term of external and internal harmonics
based on a) and b) the exponential model, c) and d) the power model and e) and f) the
KTH model.
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Now, we consider the atmospheric bias based on the aforementioned den-
sity models. Here we use Eqs. (8a)–(8c) and consider the terms related to
the topographic harmonics. As can be seen in the equations, the first topo-
graphic term of the atmospheric biases is the same for harmonics of all the
density models. Also, the second topographic term decays and therefore the
atmospheric biases based on these models are convergent. In order to make
a better comparison, we plot the degree variances of each topographic term.

Fig. 2. Degree variances of second and third topographic terms of atmospheric bias based
on different atmospheric models.

As already mentioned, the second term of the topographic and the atmo-
spheric biases is the same for all atmospheric models; this is why only one
curve is visible for this term in Fig. 2. The harmonics of the exponential
and the power density models coincide since the topographic terms of the
external and internal are very similar and only one curve is visible for their
third bias term. However, the KTH model differs from these two models in
the third term.
One consequence of Fig. 2 could be the difference between the atmo-

spheric effect in the remove-compute-restore scheme and the analytical con-
tinuation. As can be seen, the internal harmonics of the exponential and
power models do not converge above the degree 2000. Therefore we can
say that in the remove-compute-restore scheme we are restricted to use the
internal type of the harmonics to a certain degree to restore the atmospheric
effect. However, as we already mentioned, there is no difficulty in conver-
gence of the atmospheric bias.
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5.2. Numerical studies on topographic bias on gravitational
gradients

Now we plot the degree variances of each topographic term of the topo-
graphic bias on the gradients. It was already mentioned that the topo-
graphic bias on Vzz is not convergent to the second and third terms. Figure
3a shows that the power of the second term will be the same as that of
the first at the degree 58, and the third one is 1520. It means that it is
only asymptotically convergent to the degree 58. Equations (10b) and (10c)
indicate the divergence of the third term, but Figures 3b and 3c show that
this term can also be used as along as the power of the third term is lower
than the other terms. Figure 3b shows that it can be used to the degree 66
for Vxx and Vyy, and Figure 3c to 114 for Vxzand Vyz.

Fig. 3. Degree variances of each topographic term of topographic bias on a) Vzz, b) Vxx

and Vyy and c) Vxz and Vyz.

291



Eshagh M.: On the convergence of spherical harmonic. . . (273–299)

5.3. Numerical studies on atmospheric bias on gravitational
gradients

In this section, we will consider the atmospheric biases based on the consid-
ered density models. We divide this section into three parts and in each part
we consider one atmospheric density model. We start with the power model.

5.3.1. The power model

We plot the degree variances of the first, second and third topographic terms
of Eqs. (11a)–(11c). Figure 4a shows that the atmospheric bias on Vzz is
convergent only to the first topographic term, but the second and third
terms are convergent to the degrees 95 and 114, respectively, as the power

Fig. 4. Degree variances of each topographic term of atmospheric bias based on power
model on a) Vzz, b) Vxx and Vyy and c) Vxz and Vyz.
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of these terms is the same in the first term on these degrees. Figures 4b and
4c show that the harmonics are convergent to the second topographic term
and asymptotically converge to the third term with the degrees below 1447
on Vxx, Vyy, Vxz and Vyz.

5.3.2. The exponential model

The same difficulty as that of the power model is observed in convergence
of the atmospheric bias for Vzz. As shown in Fig. 5a, the second and third
topographic terms have the same power as the first term in the degrees 88
and 95. According to Fig. 5b one observes no problem in convergence of the
first and second topographic terms of the harmonics of atmospheric bias on

Fig. 5. Degree variances of each term of atmospheric bias based on exponential model on
a) Vzz, b) Vxx and Vyy and c) Vxz and Vyz.
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Vxx and Vyy, but the power of the third term is equal to the first and second
terms in the degrees 888 and 1994, respectively. Figure 5c shows that the
second topographic term has equal power to that of the second term in the
degree 1298.

5.3.3. The KTH model

Figure 6a shows that the second and third topographic terms will have the
equivalent power as the first term in the degrees 49 and 82, respectively.
It means that these terms are not convergent and cannot be used to esti-
mate the atmospheric bias on Vzz. Figures 6b and 6c show that the power
of third topographic term is equal to that of the second order one at the

Fig. 6. Degree variances of each topographic term of atmospheric bias based on the KTH
model on a) Vzz, b) Vxx and Vyy and c) Vxz and Vyz.
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degrees 1218 and 1132 on Vxx and Vyy and Vxz and Vyz, respectively. It will
have the same power as the first term for the degree greater than 2000 but
will not be important as it is of the same power as the second term.
A general conclusion can be made for the convergence of the atmospheric

bias on the gravitational gradients based on all the considered analytical at-
mospheric density models. The harmonic coefficients of the atmospheric bias
on Vzz converge if the first topographic term is used in the mathematical
expression of the bias. Correspondingly, the harmonics of the atmospheric
bias on Vxx, Vyy, Vxz and Vyz will converge when the binomial expansion of
the topographic heights is considered to third-order; namely, if the first and
second topographic terms of the harmonics are considered. More precisely,
we can say that the atmospheric bias on Vzz is convergent to degrees 95, 88
and 49 based on the power, exponential and KTH models, respectively, to
the second topographic term, or they are asymptotically convergent to the
third term. This degree is 58 for the topographic bias on the same gradients.
The topographic and atmospheric biases on Vxx and Vyy are convergent to
the second topographic term and asymptotically convergent to the third
term for the degrees below 66 for the topographic bias, and below 1447,
888 and 1218 for the atmospheric bias based on the power, exponential and
KTH models, respectively. These numbers are 114 for the topographic bias
and 1447, 1298 and 1132 for the atmospheric bias on Vxz and Vyz.
From the above study we can conclude that for continuing the gravi-

tational gradients down to sea level based on analytical continuation, the
topographic and atmospheric biases should be considered just to first to-
pographic term for Vzz, and to second term for Vxx, Vyy, Vxz and Vyz and
there is no difficulty in convergence of harmonic for Vxy. The gravitational
gradient can be continued analytically (without removing and restoring the
topographic and atmospheric effects), but the topographic and atmospheric
biases should be removed from the downward continued gradients (which
are biased) at sea level.

6. Conclusions

We presented the mathematical models of the atmospheric and topographic
biases on the gravitational gradients. We showed that the harmonics of the
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biases are convergent if the binomial expansion of the topographic heights
is truncated to third order. The harmonics of the atmospheric bias of Vzz

is convergent just to the first topographic term. It means that for comput-
ing the atmospheric bias the harmonics should be generated to this term,
independent of the altitude of gradiometer and application. There is no
convergence difficulty in Vxy and it can be continued downward to sea level
analytically and the biases can be removed from the results; it is not impor-
tant at which altitude the gravity gradients are measured. The harmonics
of the atmospheric bias of the other gradients are convergent to the second
order topographic term and they are asymptotically convergent to the third
term. It means that the harmonics should be generated to the second term
when the gravity gradients are measured near the Earth’s surface but for
the satellite gravity gradiometry missions, e.g., GOCE, the third term can
also be used as the GOCE data cannot sense higher frequencies of the Earth
gravity field and the maximum degree of the gravity field is smaller than
the convergence degree.
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Sjöberg L. E., 2007: Topographic bias by analytical continuation in physical geodesy.
Journal of Geodesy, 81, 345–350.
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