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Abstract: We present an exact analytical solution of the two potential problems which
can help to understand heat flow and groundwater flow in some deep elongated geother-
mal resources. The thermal conductivity and diffusivity coefficients of the spheroid and
surrounding medium are different. The solutions are expressed in terms of the spherical
functions of the first and second kinds. The results of numerical calculations are presented
for the half-spheroidal body at the surface of the Earth.
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1. Introduction

In addition to the solution of the similar problem for the oblate spheroid
it is also of interest to determine such a solution for the prolate spheroidal
obstacle in the uniform heat or groundwater flow. Similar problems were
solved in various potential problems presented e.g. for the D.C. geoelectric
potential field (Cook and Nostrand, 1952; Wait, 1982). The magnetic field
anomalies can be easily calculated by the modifications of static-electricity
problems treated in Smythe (1968). We shall apply similar treatment to
the groundwater flow problem. The solution for the groundwater flow was
presented for the oblate spheroid in Hvoždara (2008).
We consider the prolate spheroid bounded by rotation of the ellipse with

semiaxes a, b (a > b) around the vertical axis z which prolongates the longer
vertical semiaxis a downward the Earth, as shown in Fig. 1 in section by
the x, z plane. The section of this spheroid by the horizontal plane (x, y) is
the circle x2 + y2 = b2. Let the coefficient of the filtration of the spheroid
is κT and that of the surrounding medium is κ1. According to the steady
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Fig. 1. Model of prolate spheroid rotationally symmetric around vertical z axis.

groundwater flow theory e.g. Bear and Verruijt (1987), the velocity V of
the flow can be obtained as the gradient of the potential U :

V = − gradU. (1)

The volume flow density across the unit surface area is:

F = κV, [F ] = (m3/s) ·m−2 = m/s. (2)

This represents the volume of groundwater which is transported in 1 second
across the 1m2 area, so the filtration coefficients κ1 and κT are dimension-
less. The velocity field V for the steady laminar flow obeys the equation of
continuity in the form:

divV = 0, (3)

so the potential U satisfies the Laplace equation

∇2U = 0. (4)

The potential of the unperturbed uniform velocity V0 field far from the
spheroid is supposed to be of the form

U0(x, y, z) = −V0(x cosϕ0 + y sinϕ0), (5)
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where ϕ0 is azimuth of V0 reckoned to the x-axis. The presence of spheroidal
obstacle causes perturbation potential U ∗1 (x, y, z) outside of the spheroid
which also obeys the Laplace equation as well as the potential UT (x, y, z)
inside the spheroid. On the surface S of the spheroid, continuity of the
potentials and normal volume flow density must be fulfilled:

[U0 + U∗1 ]S = [UT ]S , (6)

κ1

[
∂

∂n
(U0 + U∗1 )

]
S
= κT

[
∂

∂n
UT

]
S

. (7)

We will solve this boundary value problem by the method of separation
of variables in the prolate spheroidal system (α, β, ϕ). The transformation
relations to the Cartesian system are:

x = f shα sinβ cosϕ, y = f shα sinβ sinϕ, z = f chα cos β (8)

(see e.g. Lebedev (1963), Arfken (1966), Madelung (1957)). The coordi-
nates α, β, ϕ vary over the intervals:

α ∈ 〈0,+∞), β ∈ 〈0, π〉, ϕ ∈ 〈0, 2π),
and f is the prolateness parameter

f =
√

a2 − b2, (9)

where a, b are the lengths of the major or minor semiaxes, respectively, of
the generating vertical ellipse (see Fig. 1). Using transformation relations
(8) we can find that surfaces α = const. are z-prorated rotational ellipsoids
defined by equations:

x2 + y2

f2 sh2 α
+

z2

f2 ch2 α
= 1 or

r2

f2 sh2 α
+

z2

f2 ch2 α
= 1, (10)

where r =
√

x2 + y2 is the horizontal distance from z-axis. The equation of
ellipse in (x, z) plane which generates the surface of the z-prolate spheroid
S is:

x2

b2
+

z2

a2
= 1. (11)

This is matched with the supporting spheroid α = α0 if we put in (10):
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a2 = f2 ch2α0, b2 = f2 sh2α0. (12)

We know that there holds

ch2α0 − sh2α0 = 1, (13)

so we easily find the prolateness parameter f :

f2 = a2 − b2, f =
√

a2 − b2, (14)

which means that f is numerical eccentricity of the generating ellipse with
foci in the points on z-axis: (0, 0,−f), (0, 0,+f). The polar axis for the
angle β is halfline z ∈ 〈0,+∞), which corresponds to β = 0, and the
halfline z ∈ (−∞, 0〉 which corresponds to β = π. We obtain the coordinate
surfaces β = const from (8) eliminating chα and shα by using (13). These
are confocal hyperboloids

z2

f2 cos2 β
− r2

f2 sin2 β
= 1. (15)

We note that the plane z = 0 corresponds to a degenerated hyperboloid
β = π/2. From relations (12) we obtain:

eα0 = (a+ b)/f, α0 = ln[(a+ b)/f ]. (16)

In this manner we link the spheroidal system (α, β, ϕ) to the generating
ellipse. We also record the Lame’s metrical parameters from Lebedev (1963):

hα = f(sh2α+ sinβ)1/2 = hβ, hϕ = f shα sin2 β. (17)

The particular solution of the Laplace equation in the prolate ellipsoidal
system can be found e.g. in Lebedev (1963). This is a combination of
functions:

Unm(α, β, ϕ) =

{
Pm

n (chα)
Qm

n (chα)

}
Pm

n (cos β)

{
cosmϕ
sinmϕ

. (18)

Here Pm
n (s), Q

m
n (s) are the associated spherical functions for argument s =

chα > 1, P m
n (cos β) are the associated Legendre functions of degree n, order

m:

Pm
n (η) = (1− η2)m/2 d

m Pn(η)
d ηm

. (19)
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From the theory of spherical functions we know that spherical functions of
the second kind Qm

n (s) are singular for s → 1, so in the interior potential
UT (α, β, ϕ) cannot be applied. The unperturbed potential field U0 given by
(5) can be written in the form:

U0(r, ϕ) = −V0r cos(ϕ− ϕ0) = −V0f shα sinβ cos(ϕ− ϕ0). (20)

We know that sinβ = P 11 (cos β), and from the orthogonality of the spherical
functions as well as from the Fourier series of functions cosmϕ, sinmϕ we
can state that only solutions with n = 1 and m = 1 will appear in our
problem. Then the potential inside the ellipsoid is:

UT = −V0B1f shα sinβ cos(ϕ− ϕ0), (21)

which is multiple of the primary potential (20) since P 11 (chα) = shα. Out-
side the spheroid we take the potential as the sum of U0(α, β, ϕ) and per-
turbation part with function Q11(chα):

U1 = −V0f
[
shα+A1Q

1
1(chα)

]
sinβ cos(ϕ− ϕ0). (22)

The functions P 11 (chα) cannot occur in U1 since these are singular for
chα → +∞. We determine the coefficients A1, B1 by using the bound-
ary conditions (6) and (7) on the spheroid α = α0:

[U1]α0 = [UT ]α0 , [∂U1/∂α]α0 = (κT /κ1) [∂UT /∂α]α0 . (23)

We easily obtain the following relations:

B1 shα0 = A1Q
1
1(chα0) + shα0, (24)

κT

κ1
B1 chα0 =

[
chα0 +A1 shα0Q

1
1(chα0)

]
. (25)

Elimination method of solution will give:

A1 =
(κT /κ1 − 1) chα0 shα0

sh2α0Q11(chα0)− (κT /κ1) chα0Q11(chα0)
, (26)

B1 = 1 +Q11(chα0)A1/ shα0. (27)
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In (25) we have used: dQ11(chα0)/dα = shα Q1
′
1 (chα0). It is necessary to

quote expressions for functions Q11(s) and its derivatives since these are not
very frequent. In Lebedev 1963 we find the following expressions valid for
s > 1:

Q1(s) =
∞∑

k=0

1
2k + 3

1
s2k+2

= (s/2) ln
s+ 1
s− 1 − 1. (28)

Q11(s) = (s
2 − 1)1/2 d

d s
Q1(s) = −(s2 − 1)1/2

∞∑
k=0

(2k + 2)
(2k + 3)

1
s2k+3

=

= (s2 − 1)1/2
{
1
2
ln

s+ 1
s− 1 −

s

s2 − 1
}

. (29)

The expression for Q1
′
1 (s) can be derived from (29). It is obvious that Q11(s)

and its derivative converge to zero for s → +∞ which implies zero values
of the perturbing potential U ∗1 (α, β, ϕ) far from the spheroid.

2. Calculations for the half-spheroidal obstacle

It is clear that the presented solution can be easily adapted also for the half-
spheroidal obstacle which touches the earth surface plane z = 0. This seems
to be more applicable for hydro-geothermal problems. Additional condition
for the velocity field is a zero value of the z-derivative of potentials U1 and
UT which guaranties that there is no outflow across for the plane z = 0.
This condition corresponds to zero value of the β derivative of potentials
U1 and UT on the surface β = π/2. This is clearly satisfied, because both
these potentials are proportional to sinβ, with β-derivative equal to cos β.
We calculate the velocity field separately for the interior and exterior of the
half-spheroid. In the interior we have the potential

UT (α, β, ϕ) = −B1V0f shα sinβ cos(ϕ− ϕ0), (30)

where coefficient B1 is given by (27). Using transformation relations (8) we
easily obtain the expression for UT in Cartesian coordinates:

UT (x, y, z) = −B1V0(x cosϕ0 + y sinϕ0). (31)
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This is a well-known potential of uniform velocity field in the (x, y) plane
of azimuth ϕ0 modified by the factor B1. The components of velocity are:

VT x = B1V0 cosϕ0, VT y = B1V0 sinϕ0, VT z = 0. (32)

The velocity outside the half-spheroid is clearly the sum of the exciting ve-
locity field V0 and additional V ∗1 which must be calculated from the curvi-
linear components

V ∗1α = −
1
hα

∂U∗1
∂α

, V ∗1β = −
1
hβ

∂U∗1
∂β

, V ∗1ϕ = −
1
hϕ

∂U∗1
∂ϕ

, (33)

where the anomalous potential is:

U∗1 (α, β, ϕ) = −V0A1Q
1
1(shα) sin β cos(ϕ− ϕ0). (34)

Lame’s metrical parameters are given by formulae (10). The curvilinear
components of gradU ∗1 can be easily calculated and for the Cartesian com-
ponents we use the transformation relations using formulae:

V ∗x = V ∗r cosϕ− V ∗ϕ sinϕ, V ∗y = V ∗r sinϕ− V ∗ϕ cosϕ,

V ∗z =
[
−V ∗β chα sinβ + V ∗α shα cos β

] [
sh2α+ sin2 β

]−1/2
, (35)

V ∗r =
[
V ∗β shα cos β + V ∗α chα sinβ

] [
sh2α+ sin2 β

]−1/2
.

Here we adopt the formulae from Madelung (1957) with substitutions
(v, u, ϕ) → (α, β, ϕ) and u = π/2 − β, and Madelung’s au = −Vβ because
the direction of his unit vector eu is opposite to our eβ . Now we have a com-
plete set of formulae to prepare a program code for numerical calculations.
We need perform the calculations in the network of (x, z) or (x, y) coordi-
nates. Then it is necessary to present calculations for prolate spheroidal
coordinates (α, β, ϕ) shα, chα at given x, y, z. We know that the section of
coordinate surface α = const is an ellipse given by the equation (10) in (r, z)
plane; their foci are in points z = ±f , its z-axis major (vertical) semiaxis
is equal to f chα and minor semiaxis (horizontal) is equal to f shα. Using
the knowledge from analytical geometry we find that for every (r, z) point
on this ellipse the sum of distances from the first and second focus must be
equal to the doubled value of major semiaxis, which is 2f chα. It holds:
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[
r2 + (z − f)2

]1/2
+

[
r2 + (z + f)2

]1/2
= 2f chα, (36)

where r2 = x2 + y2. Using this equation we easily assign chα to x, y, z
values, since f =

√
a2 − b2 is a constant given by the principal ellipse of the

prolate spheroid, which creates a whole family of confocal ellipses α = const.
We determine the shα value to be

shα =
[
ch2α− 1

]1/2
and eα = chα+ shα. (37)

Using (8) the angle coordinate β is given by:

cos β = z/(f chα). (38)

For points on the semiaxis z > 0 there is r = 0 and from (36) we have:

|z − f |+ |z + f | = 2f chα. (39)

If z > 0, r = 0 and if z > f we have from this relation:

2z = 2f chα, (40)

which gives chα = z/f and β = 0. But on this focal segment z ∈ 〈−f, f〉
there is clearly chα = 1, shα = 0 and the angle β can be calculated using
the relation

cos β = z/f. (41)

For the azimuthal angle ϕ we have the well-known relation:

tgϕ = y/x, ϕ ∈ 〈0, 2π) (42)

for all space. For our numerical calculations we have checked various pa-
rameters of the prolate half-spheroidal obstacle at the surface of the earth.
Here we present the isoline and profile curves for the spheroid with di-
mensions of semiaxes a = 10m, b = 4m which gives the eccentricity
f =

√
a2 − b2 = 9.165m and the generating ellipse is vertical as shown

Fig. 1. We put the filtration coefficients ratio κT /κ1 = 2 for highly porous
(penetrable) obstacle or κT /κ1 = 0.2 for weakly penetrable obstacle. We
put the unperturbed velocity value V0 = 1m/s which is unrealisticly high for
real groundwater in sedimentary basins, but the presented results (graphs)
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Fig. 2a. Potential isolines around the penetrable prolate hemispheroidal obstacle and
velocity arrows.

can be easily matched to smaller values of V0 e.g. V0 = 0.01m/s. In series
of Figs 2a–d we present the isoline results for the central plane yc = 0 and
profile curves are plotted for the depth zp = a/2 (5m), which corresponds
to some interior z-plane in the halfspace and halfspheroid. In Fig. 2a we
present isolines of the perturbing velocity potential. We can see that the
velocity arrows tend to the interior of the halfspheroid, especially for depths
z/a > 0.5. In Fig. 2b there are presented isolines of the anomalous velocity
potential U ∗(x, y, z) in the vertical plane x, z and y = yc = 0 and also its
profile curve for zp/a = 0.5. In the next Figs 2c,d the maps for vertical (Vz)
and horizontal (Vx) components of the velocity are shown. We can see that
the vertical component of the velocity attains the negative values on the
left (x < −b) of the halfspheroid which means outflow to the surface z = 0,
while for (x > b) we have positive values of Vz. The horizontal component
grows by about 23.5% on the left boundary of the spheroid, while inside the
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Fig. 2b. Equipotential isolines of the anomalous velocity potential around the prolate
hemispheroidal penetrable obstacle. The bottom curve shows the profile at the depth
zp/a = 0.5.
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Fig. 2c. Isolines of the vertical (downward) component of the velocity around the prolate
hemispheroidal penetrable obstacle. The bottom curve shows the profile at the depth
zp/a = 0.5.
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Fig. 2d. Isolines of the horizontal Vx component of the velocity around the prolate
hemispheroidal penetrable obstacle. The bottom curve shows the profile at the depth
zp/a = 0.5.
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Fig. 3a. Potential isolines around the low-penetrable prolate hemispheroidal obstacle and
velocity arrows.

spheroid it drops down to 70%. This jump reflects a discontinuity of the
normal component of the velocity, but it is in agreement with continuity
of the fluid mass transfer given by −κ gradU . If we multiply the values of
Vx by κT for x ∈ (−b, b) the jump for κVz disappears and we obtain about
45% growth of the groundwater mass inside the most porous halfspheroid
(κT /κ1 = 2). It means that we have a good reservoir of groundwater in-
side this spheroid. We note that in the velocities isoline figures there are
quite dense isolines near the boundary of the hemispheroid, which is due to
steep changes of the field as showed by the profile curves below. Figure 3a
presents the potential lines and velocity vectors for resistive (low porous)
halfspheroid (κT /κ1 = 0.5). We see that the stream lines tend to avoid this
obstacle. More precisely we can see from Figs 3c–d and the profile curve in
Fig. 3d that inside the spheroid there is about 40% deficit in the horizon-
tal groundwater flow κVx. This confirms the qualitative differences when
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Fig. 3b. Equipotential isolines of the anomalous velocity potential around the prolate
hemispheroidal low-penetrable obstacle. The bottom curve shows the profile at the depth
zp/a = 0.5.
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Fig. 3c. Isolines of the vertical (downward) component of the velocity around the prolate
hemispheroidal low-penetrable obstacle. The bottom curve shows the profile at the depth
zp/a = 0.5.

109
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Fig. 3d. Isolines of the horizontal Vx component of the velocity around the prolate hemi-
spheroidal low-penetrable obstacle. The bottom curve shows the profile at the depth
zp/a = 0.5.
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compared to Figs 2b–d where κT /κ1 = 2.

3. The refraction effect of heat flow due to halfspheroid

Now we will solve the perturbation of the geothermal heat flow due to the
prolate hemispheroidal body at the surface of the earth. The unperturbed
temperature field in the halfspace z > 0 is considered in the form of linear
growth with the depth:

T0(z) = E0 z, (43)

where E0 = q0/λ1 gives gradient of the temperature, q0 is the normal
heat flow density of about 60mW/m2 and λ1 is the thermal conductiv-
ity coefficient of the halfspace outside the hemispheroid. The unperturbed
thermal field (43) corresponds to the uniform heat flow density

q0 = λ1 ∂T0/∂z, (44)

in the superficial parts of the earth’s crust. Now we will determine the
perturbation of the uniform temperature field due to the presence of the
prolate hemispheroidal body of thermal conductivity λT . We will employ
an analogy with the groundwater potential problem in the previous section.
There is a well-known result that the temperature field in considered region
must be a harmonic function. Using the prolate spheroidal coordinates given
in (8) we have the unperturbed temperature (43) in the form:

T0(z) = E0 z = E0f chα cos β. (45)

Due to the z-axis symmetry of this field (independent of x, z coordinates) as
well as the uniformity of surrounding halfspace, all the temperature field will
be independent of the azimuthal coordinate field. Since the β dependence
in (45) is given by the cos β = P1(cos β) it is clear that from the particular
solutions (18) will use only terms with m = 0 and n = 1. Then we will have
the temperature field outside of the hemispheroid

T1(α, β) = E0f [chα+ F1Q1(chα)] cos β (46)

which satisfies the boundary condition on the surface z = 0 ≡ β = π/2:
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T1(α, β)|β=π/2 = 0. (47)

The temperature field T2 inside of the hemispheroid is proportional to T0(z)
given by (42), since in solutions of Laplace equation cannot occur functions
Q1(chα) which are singular on the focal segment z ∈ (−f,+f). So we have:

T2(α, β) = G2E0f chα cos β. (48)

This solution automatically satisfies the condition of zero value at β = π/2.
On the surface of the spheroid α = α0, there must be continuity of the
temperature field and normal density of the heat flow:

[T1(α, β)]α0 = [T2(α, β)]α0 , (49)

Fig. 4a. Isotherms and heat flow arrows at the hemispheroidal good conductive obstacle.
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Fig. 4b. Isotherms of the anomalous temperature field around the hemispheroidal good
conductive obstacle.
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Hvoždara M.: Groundwater and geothermal anomalies due to. . . (95–119)

Fig. 4c. Vertical heat flow associated with the anomalous temperature field around the
hemispheroidal good conductive obstacle.
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Fig. 5a. Isotherms and heat flow arrows at the hemispheroidal low-conductive obstacle.

[∂T1(α, β)/∂α]α0 = (λT /λ1) [∂T2(α, β)/∂α] . (50)

Clearly we obtain two equations for F1 and G2:

chα0 + F1 ·Q1(chα) = G2 · chα0, 1 + F1 ·Q′1(chα0) =
λT

λ1
G2. (51)

By the elimination method we obtain the formulae:

F1 =
(1− λT /λ1) chα0

chα0Q′1(chα0)− (λT /λ1)Q1(chα0)
, (52)

G2 = 1 +
(1− λT /λ1)Q1(chα0)

chα0Q
′
1(chα0)− (λT /λ1)Q1(chα0)

. (53)
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Fig. 5b. Isotherms of the anomalous temperature field around the hemispheroidal low-
conductive obstacle.
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Fig. 5c. Vertical heat flow of the anomalous around the hemispheroidal low-conductive
obstacle.
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We can easily use these formulae to calculate the temperature field as well
as the heat flow. Let us stress that in the geothermics the following formula
for the vertical heat flow is used:

qz = λ∂T/∂z, (54)

in contrast to the physical formula q = −λ gradT . On the surface of the
earth, which corresponds to β = π/2, we have:

qz2|β=π/2 = λT G2E0, (55)

qz1|β=π/2 = q0 + λ1 q
∗
z1, (56)

where in analogy with V ∗z the anomalous heat flow density q∗z1 outside the
hemispheroid is:

q∗z =

[
1
hβ

∂T ∗1
∂β
(sh2α+ sin2 β)−1/2

]
β=π/2

, (57)

where T ∗1 = E0fF1Q1(chα) cos β is the anomalous temperature outside the
hemispheroid, as determined from (46).

4. Conclusion

Our results from the analytical model calculations clearly show that most
perspective places for good groundwater heat wells occur at conditions
with increased filtration and thermal conductivity coefficients of the hemi-
spheroid i.e. κT /κ1 ≥ 2, λT /λ1 ≥ 2. There is necessary at first to determine
prevailing direction of the unperturbed groundwater flow far from the hemi-
spheroid and this direction we put as ϕ0 = 0 in application of our theoretical
formulae. The presented Figs. 2a–d and Figs. 3a–d are applicable for hor-
izontal direction angle ϕ = 0. These wells must be situated on the side
of good conductive hemispheroid where Vz < 0 i.e. x/a < 0, which means
groundwater flow towards to the surface or in best condition the well situate
near the axis of symmetry of the hemispheroid.
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