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Abstract: The more precise determination of instantaneous peak frequency of Schumann

resonance (SR) modes, especially based on relatively short signal sequences, seems to be

important for detailed analysis of SR modal frequencies variations. Contrary to commonly

used method of obtaining modal frequencies by Lorentzian fitting of DFT spectra, the

attempt was made to employ the complex demodulation method in iterated form. The

results for SR signals contaminated with low-frequency noise and hum in various degree

as well as the comparison with standard method are presented. Real signals of vertical

electric field component picked up at the Astronomical and Geophysical Observatory of

Comenius University at Modra, Slovakia, were the primary sources.
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1. Introduction

The determination of instantaneous (short-term) modal frequencies from
sample sequences of non-stationary signal consisting of several damped har-
monic components (modes), plus wideband noise and hum, is not a simple
task from both theoretical and computational points of view. Moreover, in
the case of Schumann resonance (SR) signals, which exhibit the frequency
and amplitude variations also in short-time scales (minutes and shorter) the
choice of proper signal analysis method has no unique solution.

In this article, the results of iterative use of the complex demodulation
(CD) method for analyzing of real Schumann resonance signals are pre-
sented. Original (raw) signals, or signals prefiltered by band-pass digital
filters were both analysed by the same method.
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2. Measurements and motivation

At the Astronomical and Geophysical Observatory of Comenius University
(AGO), Modra, Slovakia, the measurements of the vertical electric field com-
ponent of Schumann resonances have been performed since October 2001.
The experimental set-up is described in Kostecký et al. (2000) and analysis
of long-term measurements in Ondrášková et al. (2007; 2011).

In Ondrášková et al. (2011) the detailed analysis of daily frequency
ranges (DFRs) of the first three SR modes in vertical electric field com-
ponent is described. Each day was covered by 48 separate signal sequences
lasting 327.68 seconds taken every half an hour (since July 2006 by 240,
each taken every 6 minutes). The sampling frequency was 200 Hz. The
modal frequencies were up to now determined by computing Discrete Fourier
Transform (DFT) spectrum and its least-square fitting by the sum of five
(or sometimes six) Lorentz functions (Rosenberg, 2004):
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(
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ω0
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where P0 stands for the peak power (for a given mode), ω0 for the modal
angular eigenfrequency and Q for the modal quality factor. This expres-
sion follows up from elementary equation of motion of the classical linear
harmonic oscillator. For the spectral line profile (which has the form of the
Lorentz function defined in Eq. 1), the physical meaning of the Q factor
can be taken as the peak frequency of a given mode divided by the spectral
line width at the half-maximum power level (full width at half-maximum,
FWHM). In other words, if the oscillator (in our case the Earth–lower iono-
sphere resonator) is excited by a very short pulse and then leave free, its
energy diminishes by a factor e−1 during the time (π.Q/ω) – the approxi-
mation valid for high values of Q.

At the first glance, this procedure seems to be quite straightforward. But
a very low Q of the Earth–lower ionosphere resonance system (Q ∼ 4÷ 10,
see Nickolaenko and Hayakawa, 2002) results in substantial variations of
“local ω0’s and Q

′s”, which may vary from one observation site to another,
because such low-Q resonator (with spatially distributed damping) can-
not be treated as linear harmonic oscillator exactly. Nevertheless, it is
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necessary to find (and justify) some procedure for this purpose, suitable
for processing of very huge quantities of data. Extraction of modal values
from signal recordings could be partially improved using non-linear fitting
(Mushtak and Williams, 2008), but the essential shortcomings of approx-
imation by Lorentz functions, which are the spectral functions of linear
harmonic weakly damped oscillator, remain. An example of spectrum fit-
ting by six Lorentz functions can be seen in Fig. 1.

The principal reason for our research was to determine Schumann modal
eigenfrequencies by means of physically more adequate method.

Fig. 1. An example of the sum of six Lorentz functions fitted to the power spectrum
of the SR signal (the vertical electric component) from August 24, 2007, 00h 00m as
determined from the whole 327.68 s long data sequence. The vertical green lines mark
the position and relative amplitude of the first six eigenmodes. The peak frequencies are
7.628 13.440, 20.062, 26.006, 31.933, and 39.237 Hz. Note that the parasitic peak at 50/3
Hz is artificially cut out and the spectrum is smoothed by moving average method.

3. Methods based on direct calculations of instantaneous fre-
quency

There is a variety of methods for determining the instantaneous (or short-
term) frequency of general non-stationary process. A comprehensive and
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exhausting survey is given in Boashash (1992). We limit ourselves to estima-
tion based on time derivative of continuous phase of oscillatory process (in
the sense of Gabor definition based on Hilbert transformation) – (Bingham
et al., 1967; Marple, 1989; Loughlin and Tacer, 1996; Huang et al., 2009)
and many others. Moreover, the parametric (non-Fourier) methods, e.g.
the Prony algorithm (Fernandes et al., 2005) are also available.

Firstly, the method of complex demodulation must be mentioned. The
method of in-phase and quadrature-phase filtering (Goodman, 1960; Verö,
1972) was successfully applied to Schumann resonance signals in (Sátori et
al., 1996) and (Sátori, 1996). For the phase extraction only, the method
of PLL (phase-locked loop) demodulation (Gupta, 1975) can be used, too.
These methods are mathematically fully equivalent. If they are applied to
“pure” input signal (free of noise and other non-harmonic wideband com-
ponents), the results must be essentially the same.

The fundamental property of all methods quoted above is the determi-
nation of the time-varying phase ϕ(t) of the oscillatory process in question
and subsequent determination of its first time derivative f(t) as

f(t) = −(1/2π) · (dϕ/dt) (2)

The slope of ϕ(t) curve indicates deviations of the instantaneous frequency
around fest (see also Eq. 6). The method of complex demodulation seems to
be most effective and easy to implement for the analysis of signals, which (1)
consist of small number (< 10 ÷ 15) even highly damped harmonic modes,
(2) their frequencies are not too close to one another, (3) the signal can be
corrupted by noise and other wideband non-modal components.

As will be shown hereafter, the degree of noise present in signal (up
to some margin) can influence only the rate of convergence if the iterative
variant of complex demodulation is used.

4. The complex demodulation method

The method of complex demodulation (Childers and Pao, 1972; Ktonas
and Papp, 1980; Sing et al., 1985; Hao et al., 1992; Myers and Orr, 1995;
Gasquet and Wootton, 1997; Draganova and Popivanov, 1999) performs
several steps for extracting every modal component. However, a very crude
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estimate (guess) of modal frequency fest must be made beforehand for each
mode in question.

The CD method consists of the following steps:

a) the “preliminary filtering” or “prefiltering” of signal by a band-pass filter
(relatively wide band) can enhance the contribution of the desired mode.
This part of procedure is in some cases not necessary, as will be shown
below.

b) the “modulation” of signal sequence x(t) by a harmonic signal (cos and
sin functions) of an estimated frequency fest, resulting in two new se-
quences

y(t) = x(t) · cos (ωest t),
z(t) = x(t) · sin (ωest t).

(3)

This and all similar operations are performed in digital domain. The
frequency spectrum of the new “modulated” sequence reflects the spec-
trum of original signal, “folded” around the “modulation frequency” fest
at both sides.

c) the “demodulation” – both y(t) and z(t) are low-pass filtered (up to
cut-off frequency fLP ). Low-pass filter must have phase characteristic in
pass-band < 0; fLP > as linear as possible. If the phase characteristics is
markedly non-linear, the unwanted shift of resulting mode frequency can
occur, which directly follows from Eq. 2. The resulting new sequences
γ(t) and ξ(t) correspond to the original signal spectrum extracted from
the frequency interval < (fest− fLP ); (fest+ fLP ) > and then shifted by
fest to lower frequencies (now centered around f = 0).
The simple graphical explanation of combined operations under b) and
c) is given in Fig. 2.

d) the “computation of the instantaneous amplitude and phase residuals”.
Both sequences γ(t) and ξ(t) can be considered as real and imaginary
components of analytic signal (complex sequence), amplitude of which
is given by

a(t) =
{
[γ(t)]2+ [(ξ(t)]2

}1/2
(4)
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and phase by

ϕ(t) = arctg[ξ(t)/γ(t)] . (5)

Due to previous frequency shifting, this quantity is named “phase resid-
ual”.
In Eq. 5, the “unwrapped phase” or “unwrinkled phase” is necessary to
be computed, i.e. the function arctg must be corrected to phase jumps
at crossings of argument between I and II, or III and IV quadrants in
both directions (Steiglitz and Dickinson, 1982; Abbas, 2005).

e) the final step: the instantaneous frequency (in the Gabor sense) at a
moment t is given by

f0(t) = fest − (1/2π) · (dϕ/dt) |t . (6)

Therefore, if the rate of phase residual in time is positive, then f0 < fest
and vice versa.

An example of the time graph of phase residual of the SR signal computed
by CD method is given in Fig. 3.

Due to the low-pass filter, the spectrum of demodulated signals is severely
limited with respect to the expected modal frequency and then with respect
to sampling frequency of signal even more by relation

Fig. 2. The spectral “images” of original (simplified) and demodulated signal. Above is
an illustrative example – the frequency spectrum of original signal. Below is the frequency
spectrum of demodulated signal (before the low-pass filtering).
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Fig. 3. (left) A sequence of 125 seconds of the vertical electric SR component, which is a
part of a complete data block. Horizontal axis shows time in seconds, receiver output on
vertical axis is in volts. (right): The time development of the smoothed phase residual (for
the first four Schumann modes) computed by the CD method from the depicted signal.
Horizontal axis is time in seconds, vertical axis in radians. The modulation frequencies
fest = 7.80, 14.1, 20.6 and 26.0 Hz, resp.; the phase residual rate of +1 rad.s−1 corresponds
to frequency deviation approx. −0.16 Hz.

fLP � fest � fsampling.

Therefore, the direct computation of phase residual for each signal sample
will “infect” the result by numerical noise, which will be even amplified by
computation of the time derivative. The possible remedy is in smoothing of
computed residuals through suitable moving time window. This procedure
can be considered as another low-pass filtering.

The steps a) and c) can be realized by convolution of signal sequence
x(t) with filter (band-pass or low-pass) unit impulse response h(t), i.e.
{x(t) ∗ h(t)} or alternatively by DFT and then by inverse DFT: compu-
tation of the signal spectrum X(ω) = Φ{x(t)}, then an ordinary product
with filter frequency response H(ω) and, finally, the inverse DFT of such
product: Φ−1{X(ω).H(ω)}. The symbols Φ and Φ−1 stand for the direct
and the inverse discrete Fourier transform, respectively. Both algorithms
are mathematically equivalent (taking into account that H(ω) = Φ{h(t)}).
If the filters are prescribed by their unit impulse responses – we will show
that this will be our case – the first algorithm is more advantageous in com-
puting time, provided that time length of response h(t) in use would be in
reasonable limits.
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5. Amplitude residuals

The amplitude residuals can give us a look on short-time variations of in-
stantaneous modal amplitude. In Fig. 4 we present the amplitude residuals
(smoothed by 2.5 sec. moving half-cosine window) of the signal given in
Fig. 3 for the first four Schumann modes. The variations of modal ampli-
tude are clearly detectable. These variations cannot be visually attributed
to variations of envelope of the unfiltered total signal, see Fig. 3.

Such second-scale amplitude variations can be observed (at filter out-
puts) in real time too. They can be surely attributed (Sátori et al., 1996;
Verö et al., 2000) to short-time variations in global excitation picture of
Schumann resonances – in other words, to short-time temporal and spatial
variations of the global thunderstorm activity and/or the variations of the
state of the lower ionospheric layers. Naturally, detection of fast modal am-
plitude variations (and modal amplitude variations in general) is far beyond
the possibility of the traditional Lorentz functions fitting of data.

Fig. 4. The smoothed amplitude residuals for the first four SR modes of the signal in
Fig. 3. Horizontal axis in seconds, vertical in relative units. Smoothing was made through
moving half-cosine window 2.5 s wide.

6. The iterative use of complex demodulation

The proper choice of the modulation frequency fest is important for ob-
taining correct results. If the deviation of the modulation frequency fest
from the real central frequency of eigenmode peak in spectrum is too high
(comparable with corner frequency of low-pass filter), then the output of
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low-pass filter would represent “false image” of modal line spectral contour.
This represents the difficulty using the “one-shot” use of CD method. For-
tunately, in case of SR signals, the coarse values of eigenmode frequencies
are known (say, 7.8, 14.1, 20.6 and 26.0 Hz for the first four SR modes).
Nevertheless, the possibility of more precise determination is very desirable
due to their daily, seasonal and interannual variations.

Hao et al. (1992) and Gasquet and Wootton (1997) discussed the pos-
sibility of iterative use of CD procedure. The instantaneous frequency val-
ues are averaged over the complete signal sequence and subsequently this
average value is taken as a new fest and the complete run of complex de-
modulation is performed again. This may be repeated until some criterion
is fulfilled, e.g. the difference in successive average frequency values, or the
sum of squared frequency deviations at computation points (time samples),
or simply after a prescribed number of iterations.

The key points in this method are the fact of convergence itself as well
as the speed of convergence. For this reason, many examples of input signal
were tested (using exclusively our own code) and in most cases the conver-
gence was achieved in a less number of iterations than had been prescribed.
Exceptions occurred only if the input signal was greatly corrupted by wide-
band noise (in such a degree that even the standard procedure of Lorentz
function fitting gave no satisfactory results).

7. The use of signal prefiltering

Most authors, e.g. Hao et al. (1992), Myers and Orr (1995), strongly rec-
ommend the preliminary filtering of signal before the complex demodulation
is applied. If we can guess the peak frequency (f0) of the mode to be ana-
lyzed, it is possible to employ (digital) band-pass filter centered at f0. The
choice of bandwidth remains somewhat intuitive, in some sense arbitrary.

We have used (as an experiment) the convolution filters defined in (Verö,
1972) and applied in (Sátori et al., 1996) and (Sátori, 1996) to Schumann
resonance signals. These filters are defined by their unit impulse response.
Such definition facilitates the filtering operations in the computer code, see
the end of Section 4.

Figure 5 illustrates the short 10 s part of SR signal (Fig. 3) prefiltered by
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the 1st mode convolution filter. At 114.67 s, the transient event (Q-burst)
occurred and the approximately exponential envelope of Earth–ionosphere
resonator response is clearly seen, which could give a very coarse estimate
of modal quality factor Q of the resonator.

Contrary to our expectation, the use of prefilters brought only very small
changes in complex demodulation results and practically no improvement
in the rate of convergence in the iterative procedure of the peak frequency
determination. Some exceptions may occur for the 1st Schumann mode, as
we have confirmed by the analysis of CD process applied to raw (unfiltered)
and preliminary filtered signals. For the sake of brevity, we do not quote
these results herein.

At the first sight, a simple comparison of the filtered (Fig. 5) and the
unfiltered (Fig. 3) signals (in which no trace of harmonic component can be
visible) must lead to the opposite conclusion. But – as we can see in Fig. 5
again – the modal harmonic component itself is “amplitude modulated” by
chaotic (natural) signal, mostly in the frequency range ∼ 0.5 ÷ 1 Hz. Such
“modulation” reflects the temporal (and also spatial) variations of SR exci-
tation by the global thunderstorm activity. The spectral profile of a modal
line exhibits the permanent changes in the time scale much shorter than the
length of every data block.

Fig. 5. (left) A selected part of unfiltered signal from Fig. 3 and (right) the same signal
but prefiltered with the 1st Schumann mode filter (f0 = 7.80 Hz). The time interval
covers the signal from 110 s to 120 s after the data block beginning. Horizontal axis is
in seconds, vertical axis in left graph is in volts at true receiver output. The vertical
axis on the right represents the receiver output diminished by constant attenuation of the
band-pass filter. Note the onset of a transient (Q-burst) at 114.67 s, which is consistent
with maxima of amplitude residuals of all modes in Fig. 4.
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The complex demodulation operation is equivalent to some “implicit”
band-pass filtering with passband frequencies within < (fmode−fLP ); (fmode

+fLP ) >. Taking into account fLP =∼ 0.8 Hz and about 2 Hz bandwidth
of convolution prefilter, the non-efficiency of our prefiltering seems to be
not very surprising. Due to these empirical facts, we did not employ the
prefiltering operation in all the following calculations.

The reason for slightly increased “sensitivity” of CD results in the case
of the first (fundamental) Schumann mode seems to reflect the fact that the
spectral density of wideband low-frequency noise (of natural origin) has ap-
proximately (1/f) character. Therefore, the fundamental (lowest frequency)
mode must be the most susceptible to such noise influence.

Concerning the choice of the low-pass demodulation filter corner fre-
quency (Myers and Or, 1994; Lee and Park, 1994), a very crude estimate
tends to the value of about half-width of spectral line of the eigenmode under
question or slightly higher. From this point of view, our choice fLP ∼ 0.8 Hz
could be quite reasonable. It would be worth recommending to demodulate
several signal sequences with various fLP and compare the results.

8. The test results

Many computer runs were performed as the test ones. In all cases, the input
signals were recordings of the vertical electric field intensity in Schumann
resonance band (∼ 5÷ 100 Hz) picked up at AGO Modra, Slovakia.

The rate of convergence in the iterative use of CD was dependent on
the time length of signal sequence. If this sequence was of standard dura-
tion of data block in our measurement protocol, i.e. 327.68 seconds (65536
samples), usually the criterion of average frequency change under 0.001 Hz
was fulfilled after 15 ÷ 25 iterations. After splitting of data block into 16
sub-blocks (20.48 s each), the same convergence limit was achieved after
3÷ 5 iterations (for each sub-block alone) in most cases.

The time derivatives of phase (see Eq. 6) were computed by symmet-
rical five-point finite difference formula. In the case of full length (65536
samples) data block, the beginning and end of sequence were clamped by
Hann window of 1000 samples (5 s) length, for sub-blocks (4096 samples)
the width of Hann window was reduced to 100 samples (0.5 s).
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The sampling frequency was in all cases 200 Hz. For demodulation, the
digital 8th-order Butterworth low-pass filter was used, with corner frequency
0.73 Hz, group delay in the pass-band 1.05 s, and the slope of amplitude
response in the stop-band ∼ 140 dB/octave.

The amplitude and phase frequency responses of the low-pass filter are
given in Fig. 6.

Fig. 6. Amplitude (left) and phase (right) response of the low-pass demodulation filter.
Horizontal axis is frequency in Hz, vertical axis is the amplitude transfer function in dB
and unwrapped phase in radians, respectively.

Before processing of real Schumann signal sequences, we have executed
many computations with artificial signals – amplitude and frequency mod-
ulated, like in Draganova and Popivanov (1999) – with very satisfactory
results. For the sake of brevity, we do not present them here.

A very important question is the stability of the resulting computed fre-
quency with respect to changes in fest guess. In the ideal case, the result
(for the same raw signal) should be independent of fest. In reality, some
statistically insignificant shifts in demodulation results have occurred, if the
fest underwent changes.

An interesting/illustrative computer experiment was made: the same
real signal (complete 327.68 s long data block) was many times processed
by the iterative CD code, for varying input values of fest from 6.5 Hz to
27.0 Hz in 0.5 Hz increments (total 44 values). The results, i.e. the com-
puted average frequencies are shown in Fig. 7. The “plateaus” in graph
clearly coincide with Schumann resonance modal frequencies. The inter-
val of fest < 16.0; 17.5Hz > is especially worth mentioning. The iterative
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Fig. 7. The convergence graph for one complete real signal block. For a given fest on the
horizontal axis (stepped from 6.5 to 27.0 Hz in 0.5 Hz increments) the computed average
frequency f0 at the end of iteration is shown. Condition for termination was the difference
between successive f0’s values under 0.001 Hz.

complex demodulation was “locked on” the parasitic component of signal
at 16.67 Hz frequency (50/3). This component is often clearly visible in
spectra as a sharp narrow line, originating from driving frequency of elec-
trified Austrian Railways (ÖBB), detectable at our observatory at a 55 km
distance. The 16.67 Hz artifact is, in general, much more pronounced in
magnetic field component, with significantly variable amplitude. The high-
est amplitude usually occurs in the second half of the night and at dawns.
That is why the procedure of Lorentzian fitting has to cut out the 50/3 Hz
peak (see a short horizontal line in spectrum in Fig. 1).

The rate of convergence is documented in Fig. 8. The same input signal
is processed by complex demodulation twice, at first, the procedure starts
from fest = 7.20 Hz for the 1st mode and from 13 Hz for 2nd mode (lower
curves) and then the procedure starts from fest = 8.50 Hz and 15 Hz (up-
per curves). Computations for the 2nd mode were terminated after the
prescribed maximal number of iterations (30) in case of the upper esti-
mate of fest = 15 Hz and after 25 iterations in case of the lower estimate
fest = 13 Hz.

In some cases – when the input signal is grossly contaminated by noise
over the whole sequence – the procedure shows no convergence and output
value is slowly (and steadily) decreasing to unacceptable low values (under
1 Hz). These cases can be predicted when observing the DFT spectra of
signals.
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Fig. 8. The convergence graph for the 1st and 2nd Schumann resonance mode – input
signal was full length block of data (327.68 s, i.e. 65536 samples).

9. Results of iterative complex demodulation

The method described above was applied to our Schumann resonance record-
ings. As an example, 4-day frequency variations of the first four SR modes
are given in Fig. 9.

The 327.68 s long data sequences (full-length blocks) were divided into 16
sub-blocks (20.68 s long) and demodulated independently. Thus, there are
240× 16 = 3840 sub-blocks per day. The complex demodulation procedure
was used using 3 different termination conditions: in the first procedure only
one iteration was made (results are marked green/light grey), in the second
procedure run the maximal number of iterations was set to 5 (red/dark
grey), and in the 3rd run the maximal number of iterations was set to 10
(black). This colour code is the same in all following figures. A 0.001 Hz
difference of the successive values of f0 was another termination condition,
which was in many cases fulfilled earlier than maximal number of iterations.
The fest were set 7.8, 14.1, 20.6 and 26.0 Hz.

It can be seen that the final frequency f0 of a sub-block after one itera-
tion step does not differ from fest by more than 0.3 Hz. A small fraction of
procedure runs terminated after more than 5 iterations in which f0 reached
values below 7.2 Hz or over 8.5 Hz (for the 1st mode). The points showing
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Fig. 9. The results of complex demodulation of the four Schumann modes from December
1–4, 2006. For every day, 3840 points are given (240 data blocks each day are divided
into 16 sub-blocks and every sub-block was processed independently). Points of various
types and colors differentiate between demodulation procedure runs, which were limited
to either 1, 5 or 10 iterations.

significant (> 1 Hz) deviations from average frequency in most cases cor-
respond to data sequences heavily corrupted by noise and/or technogenic
hum. As a rule, neither the Lorentzian fitting gives physically plausible
results at these times.

The average frequency f0 of a complete full-length block can be easily
calculated as a mean of 16 values of all 16 sub-blocks. The results using all
3 procedure runs are given in Fig. 10. Naturally, these mean values are less
scattered than frequencies determined for individual sub-blocks.

Finally, the results of the complex demodulation method with maxi-
mal iterations set to 10 are compared with the results of Lorentzian fitting
method, see Fig. 11. As the Lorentzian fitting is applied to the full-length
blocks, the black points representing the complex demodulation are means
of all 16 sub-blocks (and they are the same as in Fig. 10). At the end of the
4th day, frequencies of the 1st mode decrease below reasonable value (below
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Fig. 10. Results of the 1st and 2nd mode demodulation of 327.68-second measured se-
quence calculated as a mean of all 16 sub-blocks. Points of different type and colors
differentiate between demodulation procedure runs, which were limited to either 1, 5 or
10 iterations. The axes and the scale are the same as in Fig. 9. Naturally, these values
are less scattered than frequencies determined for sub-blocks.

7.2 Hz) what is likely caused by strong wind near the antenna site (trem-
bling tree leaves strongly disturbed the SR signal). At these times, neither
the Lorentz function fitting nor demodulation procedure give results near
the 1st mode frequency.

10. DFR derived by use of CD method

One of the most principal goals of SR analysis is the determination of
average DFR’s (Daily Frequency Ranges) of the SR modes for successive
months of years. The DFR (for a given month) is the difference between
maximal and minimal value of monthly averages taken at the same time
(hour and minute). It has been shown that these quantities have direct re-
lations to the geometrical (angular) area of the global thunderstorm foci on
the Earth’s surface (Nickolaenko and Hayakawa, 2002; Ondrášková et al.,
2011). Therefore, the more precise determination of average DFR’s is of
great interest. The observations and also computations have justified (Sátori
– private communication) that a non-negligible systematic differences exist
between average monthly DFR’s determined by the Lorentz function fitting
of eigenmodes (traditional approach) and those computed by the complex
demodulation (or possibly other non-Lorentzian) methods.

In an ideal case we have 10 data blocks per hour, therefore 240 per day
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Fig. 11. Modal frequencies (black points) derived by iterative use of complex demodulation
(with a limit of 10 iterations) compared with Lorentz functions fitting (violet/grey points)
in the same time interval as in Fig. 9. At the end of 4th day, both methods give results
below the reasonable values (below 7.2 Hz), which is likely caused by strong wind near
the antenna site.

multiplied by 30 (31) days, i.e. 7200 (7440) full data blocks from one par-
ticular month. The computations were made for each 20.48 s sub-block
(4096 samples each), therefore for 240 × 16 = 3840 per day or 115 200
(119 040) sub-blocks per month. An average f0 of each 7200 or 7440 blocks
is calculated taking into account only physically reasonable values of f0 of
individual sub-blocks. Then a monthly mean value for a given time of day
is calculated as a simple average of f0 values from all 30 or 31 data blocks
taken at the same time (hour and minute).

Daily variations of the central frequency of the 1st and 2nd SR modes
obtained by the Lorentzian fitting and by the CD method can be seen in
Fig. 12. It is worth mentioning that the resulting f0 after maximally 5 or
10 iterations exhibits very small differences, except for the small number
of cases when signal sequence was grossly contaminated by noise and the
computed f0 after 5 iterations permanently goes down to unphysical values.
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Fig. 12. Daily variations of the 1st and 2nd Schumann mode resonance frequency averaged
over one month (January 2007). Individual curves show daily variation determined by
complex demodulation procedures, when number of iterations was limited to 1, 5, and
10, respectively, and by the Lorentz function fitting. The initial guess value of fest was
taken 7.80 Hz and 14.1 Hz for the 1st and 2nd mode, respectively. Results of sub-blocks
outside a reasonable interval of 7.2–8.5 Hz and 13–15 Hz have been discarded.

Occasionally, the f0 after the 5th iteration could be still > 7.2 Hz limit (and
therefore acceptable), but f0 after final 10th iteration decreased slightly un-
der 7.2 Hz and was discarded. Just for this reason, the curve f0 for maximum
10 iterations is for all times by a tiny value of about 0.015÷0.02 Hz over the
curve f0 for maximum 5 iterations. As can be seen, the mean daily variation
is less significant when the results of 1 iteration are used. Using the iterative
complex demodulation method, the mean daily variation as well as the DFR
are comparable with those obtained by the Lorentz function fitting method
in the case of the 1st SR mode. But the situation is quite different for the
2nd mode (Fig. 12) – the results of Lorentz function fitting (violet/dotted
curves) are much more different from complex demodulation ones (red or
black curves). Moreover, the daily variation of the Lorentz fitting resembles
the amplified variation of the complex demodulation results.

These results (in Figs. 11 and 12) show that despite of similar daily fre-
quency pattern the frequencies can be quantitatively compared only if they
were determined by the same spectral method.

For typical monthly averaged DFR’s for the first three Schumann reso-
nance modes see (Ondrášková et al., 2011). The graphs herein were obtained
by the “old” method of modal frequency computation (the fitting of signal
DFT spectra by the sum of Lorentzians). These graphs cover the interval

322



Contributions to Geophysics and Geodesy Vol. 43/4, 2013 (305–326)

from October 2001 (start of regular monitoring at our observatory) up to
July 2009, inclusively. The systematic lowering of modal frequencies from
year to year (clearly seen in graphs therein) is connected with the phase of
solar activity cycle.

11. Conclusions

The complex demodulation method was applied to reveal frequency and
amplitude variations of Schumann resonance modal spectral peaks. It was
found that the iterative variant of the CD method should be used since it
is less dependent on the initial guess of demodulation frequency. Therefore,
based on the results of many computations, this method seems to be su-
perior with respect to “one-shot” (single iteration) complex demodulation,
as well as with respect to in-phase and quadrature-phase filtering meth-
ods. The computation complexity of the iterative variant is practically not
greater compared to methods quoted above.

This method seems to be clearly superior compared with traditional
Lorentz functions approximation. Taking into account the physical back-
ground, this method shows to be more natural approximation of the reality
then the traditional Lorentz functions approximation.

The iterative complex demodulation has been illustrated on processing
of many real Schumann resonance signals recorded at the Astronomical and
Geophysical Observatory of Comenius University in Modra, Slovakia.

An important question is how to apply the CD method. There are two
possibilities, either CD is applied on the whole (full-length) 327.68 s long SR
records or on short sub-blocks. Results of the latter possibility are presented
here. Troubles arise from records disturbed by the local meteorological con-
ditions when output of measurements or their parts are strongly saturated.
Such outputs or their parts can give unphysical values of the searched cen-
tral peak frequency. The approximation of SR peaks by Lorentz functions
was applied on the whole 327.68 s long SR records and unreasonable values
were excluded from the obtained values, e.g. only values from an interval
< 7.2; 8.5 > were selected for the first SR mode. Partially saturated record
sometimes gave reasonable values but they could contribute to the scatter
of the values. The advantage of CD method applied on the short sub-blocks
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lies in the fact that “bad” values of the frequency from saturated sub-blocks
can be discarded and the scatter of the frequency values is decreased. This
may be the main reason for the differences between the monthly mean daily
variations determined by the Lorentzian fitting and by the CD method ap-
plied on the sub-blocks presented here, see Fig. 12. Obviously, a part of the
differences arise from the fact that the Lorentzian fitting and CD method
are two different spectral methods. From this point of view, it can be con-
cluded that the CD method should be applied by iterative procedure and
on the short sub-blocks evaluating each sub-block individually.

The computations by complex demodulation method were executed us-
ing our own code. On ordinary PC, the processing time for one complete
day of raw data (which represents about 15.73 millions of samples) was ap-
proximately 2 hours to find all four SR mode central peak frequencies. This
time is comparable with the time spent by the Lorentzian fitting method to
find modal peak frequencies, amplitudes and Q-factors of the first four SR
modes.
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